تصميم نظام هجين بالاعتماد على شبكات التعلم العميق وخوارزميات التعرف على الوجوه للكشف عن المشاعر باستخدام التعابير الوجهية

المؤلفون

  • محمد بشير أمير نحاس كلية الهندسة المعلوماتية | جامعة قرطبة الخاصة | سوريا
  • لارا فتحي قديد كلية الهندسة المعلوماتية | جامعة قرطبة الخاصة | سوريا
  • محمد أحمد منير بطيخ كلية الهندسة المعلوماتية | جامعة قرطبة الخاصة | سوريا

الكلمات المفتاحية:

شبكات الطي العصبونية
Fer-Net
MTCNN
Fer-2013
التعرف على المشاعر
نظام هجين

الملخص

الأهداف: في السنوات الأخيرة تزايد الطلب على أنظمة التعرف التلقائي على العواطف للاستخدام في مجالات متعددة، بما في ذلك العمل على تعديل الحالة المزاجية للفرد لتحسين الصحة النفسية، وكذلك المساعدة في كشف مشاعر الأطفال الذين يعانون من طيف التوحد وذلك لعدم قدرتهم على التعبير عن حالتهم المزاجية. يقدم هذا البحث نظاماً (Mood Pulse) مصمماً لمحاولة الكشف عن المشاعر، حيث تم الدمج بين شبكات التعلم العميق وخوارزميات التعرف على الوجوه. حيث أنه في حال الاعتماد على شبكة تعلم عميق فإنه سيتم اعتبار أي كائن سيتم اكتشافه في الصورة كوجه ويتم التعامل معه وتحديد فيما إذا كان يمتلك مشاعر أو لا. وبالتالي سيتم الحصول على تعقيد حسابي كبير، وزمن استجابة كبير جداً، بالإضافة إلى الدقة القليلة في حال وجود أكثر من وجه في نفس الصورة.  المنهجية: تم في هذا البحث أولاً إدخال الصور بعد إجراء بعض عمليات المعالجة الأولية عليها إلى شبكة الطي العصبونية Fer-Net  والتي تم اختيارها بعد تجربة عدة شبكات طي عصبونية، والقيام ببعض التعديلات في بنية الشبكة. ومن ثم استخلاص السمات الوجهية من خلالها، ثم تصنيف هذه السمات المستخلصة إلى المشاعر الأربعة الأساسية. كذلك تم اختبار عدة قواعد بيانات قياسية كلٍ منها على حدا مثل (Fer-2013, AffectNet)  لتدريب الشبكة وتقييمها. لاحقاً تم دمج قواعد البيانات السابقة مع قواعد بيانات أخرى مثل (RAF-DB, CK+)، من أجل زيادة عدد عينات التدريب، وعينات التقييم لعدم الوقوع في مشكلة overfitting. أخيراً قمنا بالربط بين اكتشاف الوجه وشبكة التصنيف التي حصلنا عليها من النموذج المدرب من خلال خوارزمية (MTCNN) من أجل تحديد الوجوه الموجودة في الصورة فقط قبل أن يتم تحليل معالم الوجه وتحديد المشاعر المستخلصة منه. النتائج: في البداية قمنا بإجراء عملية Data augmentation  للبيانات الموجودة في قاعدة البيانات القياسية (Fer-2013) فحصلنا على مشكلة Overfitting  وذلك بسبب تكرار البيانات. من أجل ذلك تم البحث عن جميع قواعد البيانات المستخدمة في مجال الكشف عن المشاعر من أجل زيادة عدد البيانات للأصناف الأساسية المختارة.

السير الشخصية للمؤلفين

محمد بشير أمير نحاس، كلية الهندسة المعلوماتية | جامعة قرطبة الخاصة | سوريا

كلية الهندسة المعلوماتية | جامعة قرطبة الخاصة | سوريا

لارا فتحي قديد، كلية الهندسة المعلوماتية | جامعة قرطبة الخاصة | سوريا

كلية الهندسة المعلوماتية | جامعة قرطبة الخاصة | سوريا

محمد أحمد منير بطيخ، كلية الهندسة المعلوماتية | جامعة قرطبة الخاصة | سوريا

كلية الهندسة المعلوماتية | جامعة قرطبة الخاصة | سوريا

التنزيلات

منشور

2024-12-30

كيفية الاقتباس

1.
تصميم نظام هجين بالاعتماد على شبكات التعلم العميق وخوارزميات التعرف على الوجوه للكشف عن المشاعر باستخدام التعابير الوجهية. JESIT [انترنت]. 30 ديسمبر، 2024 [وثق 21 يناير، 2025];4(8):21-32. موجود في: https://journals.ajsrp.com/index.php/jesit/article/view/8465

إصدار

القسم

المقالات

كيفية الاقتباس

1.
تصميم نظام هجين بالاعتماد على شبكات التعلم العميق وخوارزميات التعرف على الوجوه للكشف عن المشاعر باستخدام التعابير الوجهية. JESIT [انترنت]. 30 ديسمبر، 2024 [وثق 21 يناير، 2025];4(8):21-32. موجود في: https://journals.ajsrp.com/index.php/jesit/article/view/8465