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1- Introduction:

In mathematics, the Cauchy-Schwarz inequality, is the one of the most used inequality in
mathematics [1] ,the applications of this famous inequality include linear algebra, probability theory ,as well
as important topics in physics and engineering[2] .Many proofs of the Cauchy-Schwarz inequality in complex
spaces are presented by Volker, see[3],also Hui - hua and Shanhe introduced some proofs of in the same
theorem, in the sense of series , see [4].In this paper we show some different proofs of this theorem. S.S.
DRAGOMIR obtain some new Schwarz related inequalities in inner product spaces over the real or complex
number field. Applications for the generalized triangle inequality[5] , KOSTADIN and RISTO obtain some new
proofs of The Cauchy-Schwarz inequality for the general type of n-inner product and some applications are

given[6].

Problem statement and objectives:

As we know, those who concerned in mathematics faced a lot of problems and how could solve it,
many students have shown that the issue of comparisons in mathematics are the most complex, that left
negative results, which has prompted us to find an establish a work that would frame the solution of these sort
of problems by using Cauchy- Schwarz Inequality for Vectors. Therefore, this paper targets to improve the
understanding of the Cauchy- Schwarz Inequality for Vectors, so as to explore the important application of this

theory.
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Methods:

our paper classified as literature review which is acritical analysis of published knowledge through
summary and classification, so we use various resources such as journal articles, books, and websites. We use
the descriptive analytical method in order to answer the following questions:

1-  Whatis the Cauchy- Schwarz Inequality for Vectors in the inner Product spaces?

2- How we can improve our understanding to this inequality?

3- Whatis the important application of Cauchy- Schwarz Inequality for Vectors in the inner Product

spaces?

Definitions serve the search:

Definition1.1: An inner product space V is a vector space over the field F of real numbers R, equipped
with a mapping (*.): V. X V' = F which satisfies the following properties: [2] .

1) Linearity: (U + V. W) = (. W) + (V. W),

2) (aU.V) = a(u.v),

3) Symmetry: (’l_f 1_5) = (171_1: ),

4) Positivity: (17 17) > 0, and (17 17) =0,iff =0, foral U.V.W EV,anda EF.

Definition 1.2: The norm of vector spaces is the analogue of the length .it is formally defined as
follows. Let V be a vector space over F, equipped with a mapping

|| = ||: V = F, which satisfies the following properties. [2].

() ||B]| = 0and||B]| = 0,if = 0,

@ llo|l = lal|[7]l.

(3) ||ﬁ + 1_7)” < ”1_1,)” + ”1_7)” (Triangle inequality),forall’a). ¥ € Vando EF.

Vector Form of the Cauchy-Schwarz inequality 1.3:

the Cauchy—Schwarz inequality states that for all vectors U and U of an inner product space it is true
that:

[(B.9) = 1191l - |19l

Furthermore, the inequality holds if and only if U and V are linearly dependent, i.e. are scalar multiple
of each other. this inequality may be stated as follows:

(@ B)2 = (@) (5. 5),or

|u; vy UV, UgVs. e Uy Vg |2 < (Ug.Up. Ug. v Uy )2 (V1. V. Vs o . V) 2, (see [4])

Also, it can be stated as the following determinant:
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(ui.vy) (ug.vy) (ug.vz) o (ug.vp)
<u2:V1> (u2:V2> (u2:V3) (uz-Vn) >0

(Un-v1) (Unvz) (UnVe) e (Un.Ve)

For all sequences of real numbers @; and b;, we have:

(Ehia;-b)? < (T1qa?) - (T, b?)

2- proofs of the inequality:

In this paper, we show different proof of the inequality as follows:

Proof 2.1: using Pythagorean theorem: (see [7])

Partl:if B = 0, (d. ¥)=(i. 0)=0and [|Z]] - |Z]|=[IEI| - ||O|| =0, then both sides of the
desired inequality equal zero, so the inequality hold. Thus, we can assume that U # 0 = (U. U) # 0,then
by using the diagram, U can be written as: Ul = Uy + P

Then, ﬁ =U— u_{ =1U— O(ﬁ,O(beanyscaIar,wehaveﬁ 1 u_l),thenl_i —av L 1_7),sowe

get:
0= (i —ab.¥) = Uv)— (ai. V) u
= (@.3) — a(3.9) P
= (.v) — of|v]|?

\4

—

S
Uq v

Figure 1pythagrean theorem for

By solving for &, then we have: ;
inner product

—_ - (ﬁ.ﬁ) - .
So that Uy = QW = BE * U, now, we can apply the Pythagorean theorem for inner product
spaces,sincel_i) is the sum ofu_f and ﬁ ,whereﬁ 1 u_l),then

11 = llusl* + 1Ip11*

@z ||? R
= |25 + 112
o 2 -
”ﬁllz = M‘|‘ ”ﬁ”z," bydelete”ﬁ”zfromthe left side” Then ”17”2 > —ll(rl_;ljl)zn

1]|2
We now multiply both sides by ||17||2, and then take the square root, we get:
[(u. o) <[]l - [|7]]
Partll: (see [7]).

Suppose that U is a scalar multiple of v then U= av , OLis any scalar, so

(L.0) = (o 5)| = al(.0)
= a|lvll
= of[z]l - lvll
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= lad|| - I7]]

= ||1_L)|| . ||13||,hencetheequa|ity hold.

Conversely, suppose that: |<ﬁ 13)>| = ”1—2” : ||17||,and we have from the upper proof:

Sz 1@ S| 2 .
” ” = W v + ||p|| , by substituting we get:
12113119117

iy = B g2

&2 = I + 1511 B B
Which implies that ||ﬁ||2 = 0,and so ||ﬁ|| =0,Butl = f;llljz U+ ﬁ >U= ilzi;ljz) v

then U is multiple scalar of U Therefore U is linearly independent of U , hence the inequality hold.

Proof 2.2: using the inner product: (see [1]).
Part I: if U = O,then the equality holds trivially, so we assume that ¥ # 0,then for any scalar
O, we have:
0<|lu-—a?d|?=@—av.U— ab)
= ||u||? — au. ?) — a(¥. %) + o?||D||?

In particularly, if we choose 00 = %,from orthogonality, this implies that:
o= “_{IZ) = (l_i,'z>,then we have:
(v.v) (v.v)
0<||P||? —==(U.D) — =—(V.U) + —=
0 < [|a|? - I(u;V)ZI _ I(u;wzl I<u;V)2I
B e

TR
We now multipllly” both sides by |[#||> , and then take the square root, we get:
[ D) < [lull - 17l
Part II: (see [1]). f|{&. V)| < [|u]| - ||¥]| then we can choose &t = 1, such that
(u. D) = (V. V), then we have ||V||? = (U.V):
OSWWW—MWWﬁW=UWW—aWWﬁMmW—MW%®
ol 7 e e 1 e o 1 e e 2 | |
= 0.
Then we must have, ||U||¥ — o||P|| U = 0

|49 = ||Vl -
- a||v|-u
V= ——F

[zl
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So, U and U are linearly dependent.

If we take U = Bu, B be any real number.

0 < |(u.Bu)|? = (U.Bu) - (u. i)
= (u. Bu) - (Pu.u) -
= B(u. Bu) - (U.u) -
= (Bu. Bu) - (u.u) -
= [l@ll? - 11| -
= [ldll? - 112l1*.

By taking square root to both sides we get:

|(1_L) 1_7))| = ||I_L>|| |l 17” , hence the proof follows.

Proof 2.3: by using a quadratic function: (see [8], [11])
Part I: consider the function p(t ): R = R such that:
p(H) = [|tv —u|?

= (tv —U.tv—1u)
= (tv.tv) — (tv. u) — (U.tV) + (U.u)
= t2||9)|?-t(P. u) — ©Wu. D) + ||ull|?
= t?||9]|*-2t(u. v) + [[]|*.

Which is a quadratic function,

Leta= ||1_7)||2,b:2(ﬁ. V), c= ”ﬁ”z,thenwehavep(t) =at?— bt+c

—b —b -b\2 -b
Assumethat: t = —, then P (—) =a (—) — b (—) +C
2a 2a 2a2 2a

b2 b
= —+ C,butp(—) >0
a 2a
_b2 b2 2
Forget the p(t) function side (LHS), Then,g +c¢c>0,c> 4—a,4ac > b“.

Therefore, |<l_i) 1_7))| = ||ﬂ|| ' ||17||
Part lI: (see [8]): let U and V are linearly dependent, such that U = AV then
(U.v) = (au.v)

= lal|I7|?
= lafllvil - vl
= llaw|l - ||Vl
= llull - 1%l
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Proof 2.4: by using the discriminate of the quadratic function: (see [4])

p(t) = [lu + tv]|?
= (U + tv. U + tv)
= (U.U) + (U.t¥) + (tV. u) + (tv. tv)
= (W.U) + t(u. v) + t(v. u) + (tv.tv)
(U.U) + 26(U. V) + t3(D. D)
t2(V. D) + 2t(U. V) + (U.U)
(. 9)% + 2(u. o0+ (U.1) =0
Le{V. V) = a,{u.¥)=b, (U.U) = by substituting, we get: at?+2bt+c=>0
This means that, this equation has no distinct two-real roots, thus the discriminate

A = 4b? — 4ac < 0, then, 4b? < 4ac

(U D)% < 4(D. D) - (U. 1)

Therefore, |<1_i 1_7)>| < ”ﬂ)” . ”1_7)” /!\\ \l\/w

Proof 2.5: by using determinant: (See [9])

Figure: denote the of zeros to the quadratic function
. — =112
For any scalar O, we use the nonnegative of the square [|i — av||* such that:

0 < ||u — av||?
= ||u|I? + o2 ||¥||? — (U.av) — {av.U)
=1 a)- <||ﬁ”2 (U. 73)) ] (1)
o @) 115012)
u u.v
Let A = ((”_> |L) <|| _,”2>) " A Hermitian". The above equation shows that 2 by1 vector
v.u v

Z= (O() has non-zero first component, then Z* * A+ Z = 0, This non — negativity also holds when Z

0
has zero first componentas far Z = ( ), we have:
Z*-A-Z = |a?||B] = 0.
We conclude that A is positive semi defined, so it has non — negative determinant

0 < detA = [[E|lI?|I7]|* — [Ku. D)|*

From which the identity follows.

Proof 2.6: by using scalar: (see [10])

If either = 0 or ¥ = 0, then U * ¥ = 0 and ||l_i|| : ||1_7)|| = 0,50 the equality hold. For the
remainder of the proof, we will assume that U and U are non— zero vectors.

Let & and [3 be arbitrary scalars, then”O(‘l_I: + [31_7)”2 = 0,using properties of length dot product,
then we have

On the Cauchy- Schwarz Inequality (90) Alla El
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lloii + BY||12 = (ol + BY. ail + B)
= a?(U. U) + af(U. D) + Bo(D. U) + B2(V. D)
= o’ [|ull* + 20B(@. ¥) + BZIV]1°.

Since this holds for all scalars 0L and [3, we are free to choose O = ”17” and 3 = ¢||ﬁ”,so
ot + o112 = DI 11EN1? + 2019/ (FIEID{u. B) + FIED*(5. D)
= 2|IB11 (12l + 21IB I (F Il 5)
= 2wkl vl + . 7).

Since U and U are non — zero vector,||U|| > 0 and ||| > 0, so ||att + Bﬁ”z > 0, is true
exactly when Izl F (u. ¥)) = 0, that exactly when: IZIH]| = F(u. V). which is the same
as [|Dl|[2ll = [{u. V).

Note that ”1_7)””17” = |(ITL) 1_7)>| exactly when ||oa_i + 81_7)”2 = O,which is exactly when
au + [317 = 0O,since U and ¥ are non-zero vectors (U + [313 = Q,impliesthatat = 3 = 0 ,or else u
and U are scalar multiple of each other. Since 0t and [3 are non - zero. one vector must be scalar multiple of

the others.

Proof 2.7: by using unit vectors: (see [10])
If either U = O or ¥ = 0, then (’l_l) 17) = 0 and ||ﬁ|| . ||13|| = 0, so equality holds. For the
remainder of the proof, we will assume that U and ¥ are non — zero vectors. First suppose that X and Y are

unit vectors, using properties of length dot product, we have:
2
Ix £yl = (xtyxty)

= (x.x) £ (x.y) £{y.x) + (y.y)
= |IxII? + 2¢x.y) + |lyll*.

=1+2(xy)+1
=2(1 % (x.y)).
Since ||x + y||2 >01+(x y) > 0, this is the same as 1 = +(x. y), thus [{X. y)| <1
further equality holds exactly when X &y = 0, which mean that y = +X. Now suppose that u
and VU are general non-zero vectors, then ||17|| = 0 and ”17” > 0,50 x = ”—;”1—1 andy = HTillﬁ are
unit vectors. Then
( 1 1 7| <1
—-U.——-V) =
lull 11Vl
(G < 1
'S u.v)l s
lull vl
Therefore, |<‘l—l> ﬁ)l < ”1—1,) || - ”17”
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Equality holds exactly when ﬁﬁ =+ ﬁ v .which means exactly when one vector is a scalar
multiple of the other.
U
Proof 2.8: by using cosine formula: (see [4]) p
Let u and v be any two vectors, for scalar product we have 4 i I
(. %) = [d] - |#| cos © v b
(u.v) = ||ull - ||| cos ® Figure 2denote the cosine
liu'vil = |COS 9| , formula
([l ||
@l _
We have, —1<cosb <1, |cosB| <1 Then, e 1
Therefore, [(u.V) < |[ull - ||Vl v
U—tu
Proof 2.9: by using cosine definition: (see [8]) f
From Pythagorean theorem, we have: R
—2 2 i tu U
12 -
|v]|c = ||tu|| + ||v — tu” )

<5 . 5) _ tz (ﬁ 17) n (1-5 . m b — ﬁ)) Figure 3 : cosine definition

(V.7) = t2(U.°0) +(V.7) — 2t(u . V) + t2(u . U).
(3 )|
llall- Il

between 0 and 90 degrees, tis positive. By the definition of cosine, we have

Cancelling <13 . 13) and collecting terms yields: t = By the assumption that 8 lies strictly

1
leu|| @ v @.u)z (i V)
cosf=-"—=——=—"—"
1wl (uauy |l 11|l

Rewriting, (ﬁl_;) = ”ﬂ””l_?)” cos 0. If ||1_i|| = ”1_7)” =1, then cos 0 = (1713) This
implies the Cauchy - Schwarz inequality, for 0 strictly between 0and90 degrees, 0<cosO<1,
hence 0 < (I_l) 13) < ||l_l)||||13)||ln particular,(l_l).l_;) = Qifand only if il and U are orthogonal.

A
iU p

Proof 2.10: by using orthogonal decomposition: (see [2]).

ifv = 0, then both sides of the inequality are zero. Hence assume that y —>

5 v

U # 0.Consider the orthogonal decomposition:

™ S (7 457)
u=p+t @3 v
(u.u) = { ﬁ + g ;: - D. ﬁ + i; ;i - D). Figure 4: orthogonal decomposition
(u.v (Uu.v) u.v)y _ U
=112 - - - - - - -
u = P+ W— V)t (- V.P)+ (V.=

lull®= (p.p)+(p @ .3) ) (<v.v> D) <<v.v> T
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= 2\2
712 = @5+ 55
ull“= (p.p @0 V.U
2_ 2 (u U)
1% I 2||p|| Ll
u.v
e s
(V.v)
1% 2B = (@ . 5)2 hence (@ . 7) < 1@ |1 - 17

Proof 2.11: by using mathematical induction: (see [4]).
lugvy + upv, + ugvg + ceeLu vy |2
< (uy+uy+ug+ o+ uy)i(vy + vy F vy e+ vy)?
Beginning the induction at 1 = 1, the case is trivial, let 1. = 2, then we have:
(uyvy +uyvy)? = ug2vy? + 2uyUuyvy vy + Uuy?vy2
< u;?vi? +u2v,? +uy?vy? + uy?vy?

= (U +u?) - (v +v22).

Which implies that the inequality holds for 1 = 2. Assume that the inequality holds for an arbitrary
integer ke,

(Thiab)’ < (T a?) (S, b))

Using the induction hypothesis, one has

\/ k+11al \/ k+1b \/Zz 1a12+a,%+1 \/Zf1b +bk+1
\/Zl 1a;? \/Z’f:1 bi® + |y 1bps1l

= Zk 1|a bi| + lag+1bg+1l = Zk+1|a b;|.

It means that the inequality holds for . = k + 1,we thus conclude that the inequality holds for all-

natural numbers. This complete the proof of the inequality.

Corollary 2.1: If (*.) is an inner product on a vector space X ,then for all uU = (u;.uy)
U= (V1.V5), then we have:

(uyvy +upvy)? < (U2 +u3)(v: +v3),Vuv € R2

Proof: Let (U1 V, — U,Vy ) be a quantity, then by squaring it, we have:

(v, —upvy)? 20
u;2v,? — 2uyuy,vy v, + uy?vy? >0
U 2v,? + uy?vy? = 2uyu,vp vy
By adding u12V12 + UZZVZZ to both sides, we get:

On the Cauchy- Schwarz Inequality
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U12V22 + u22V12 + u12V12 + uZZVZZ = 2u1u2V1V2 +u12V12 + u22V22

ulz(Vlz + VZZ) + uZZ(Vlz + VZZ) 2 u12V12 + 2u1u2V1V2 + u22V22
2 2 2 2 2
(u” +up?)(vi +vp%) = (uguy +vyvy)
2 2 2 . 2 2
(uguy +v1vy)e < (U +uy?) - (vq° + vy%).
corollary 2.2: If (.-} is an inner product on a vector space X , then for all U =
(u;.u,.u3), v = (V1.V5.V3), then we have:

(uyvy 4+ uyvy +ugvs)? < (uf + us+ul) - (v +vi +v3), Vuv e RS

Proof:

Assume we have the following positive quantity:

2 2 2
(uvy —uyvy)® + (ugvz —ugvy)® + (upvz —uzvy)“ =0

u 2v,? — 2uu,viv, +uy?vi?t + 0 ug?vy? = 2uyugvy v +uglvy? 4
u,2v3? — 2u,u3v,vs + uz?v,? > 0.

. 2., 2 2., 2 2., 2 . ,

By adding U1 “V{“ + U3“V,“ + U3“V3“ to both sides, we get:

U12V22 - 2u1u2V1V2 + u22V12 + u12V32 - ZU1U3V1V3 + U32V12 +
U,2v32 — 2u,u3v,vs + us?ve? + uy2vi 2 + uy?v,? + uglvg? > u2vi? +
u,2v,? + uz?vy?,

(U 2vi? +u?vy? + u2vs?) + (U,2v 2 + uy?vy? + uy2vs?) + ug?vy ?

+u32v,2 + u3?vy? = (uguyvyvy + Uy 2vi? + uju, vy vy )+ ug vy v +
Up? Vo 24U U3V V3+ (UpUgVoVa+ U3 V3 P+ UpUg Vo V).

U 2(vi% + vo? 4 v3?) + uy2(vy? 4+ vy? + vi?) 4+ ug?(vq 2
+vy2 +v32) = uyvy(ugvy + uyvy + ugvs) + uyvy (U vy 4 uyvy + ugvy) +
u3vs (U vy +u,vy +ugvs).
(U % + uy? 4+ uz?) (vi? + vy 2 + vi?)
> (uyvy + uyvy +u3vsy)(uy vy + u,v, + usvy)
(U2 + uy? +ug?)(ve? + vy2 +v3?) = (uyvy + uyvy + ugvg)?
2 < 2 2 2 2 2 2
(uvy + u,v, +u3vy)® < (U ® + uy,” +uz?)(vye +vy° +vg©)
Hence the inequality holds.

On the Cauchy- Schwarz Inequality
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| method(1) : using Pythagorean theorem |
| method(2) : using the inner product |
| method(3) : using quadratic function |

| method(4) : using discriminant of the quadratic equation |

| Proof method(5) : using using determinant |
| method(6) : using using scalars |
| method(7) : using unit vectors |

| method(8) : using cosine formula |

| method(9) : using orthogonal |
| method(10) : using orthogonal decomposition |

| method(11) : using mathematical induction

Table -Cauchy-schwarz Inequality — methods of proof

3- Applications:

The Cauchy — Schwarz inequality is an important inequality, that it has many applications as follows:

Theorem3.1: Triangle Inequality for inner product spaces: (see [2]).

Forall il and U € V,we have: ||U + V|| < ||| + |[Z]l.
z B
Proof:
by straight forward calculation, we obtain:
G+ 92 = (U + 0.4+ D) ST

= (U.u) + (U. V) + (V. U) + (v. D).
= |lEl? + @. %) + @.9) + [|[vlI>.
= ||lull? + ||?]|* + 2Re(u. V).
Note that: Re{U. U) < |{U. V)], so that by using Cauchy - Schwarz inequality we obtain:
i+ 911> < Nlll® + 19117 + 2(u. v
I + 71 < (Il + 1912

Taking the square root of both sides, gives the triangle inequality.

Figure 5: triangle inequality

Here we have some inequalities generated by the Cauchy- Schwarz inequality:

On the Cauchy- Schwarz Inequality (95) Alla El
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Inequality 3.2: (see [2]).
1 1 1 1
Let a, b, c be any real numbers greater than one, such that: ; + ; + ; + E = 3, then we have:

Va—-1+Vvb—1+vVc—1+vVd—-1 < Va+b+c+d.

Proof:

Lot & = (\/a—l vb-1 Vc-1 \/d—l) — ( 1 1 1 1 )B ing th
et, X = o v ve va )Y T \Goa Ve Vana Vens) y applying the
Cauchy Schwarz inequality (557) < ”3_()””7” , this yield to :

Vva-1+Vb—1+Vc—1+V/d-1 a-1 . b-1  c¢-1  d-1 1 1 1 1
< +—t—=+— =t —=+—+—,
vabcd a b c d bcd acd abd abc

Now multiply V abcd across the sign, we get:

\/a—1+\/b—1+\/c—1+\/7d—1s\/a;1+b;1+cj+d;1-

Vva+b+c+d

SJ1—2+1—%+1—%+1—§Va+b+c

SJ4_(5+5+5+§)-va+b+c+d
<Vv4-3-vVa+b+c+d

<Vi-Vva+b+c+d
cAVa—-1+Vvb—14+Ve—-14Vd—-1 < Va+b+c+d

corollary 3.1:
1

1 1 1
Let@q, Ay, As,..A, € (1.00),suchthat — + — + — ... ....— = n — 1, then we have:
a 4az as an

Ja—1+Ja,—1+Jaz—1+ -+ Ja,—1 <
\/a1+ a2+ a3+"'+an.

Proof:

aq a as an

N a;—1 a,—1 az—1 an,—1
o %= (SR J)

— ( 1 1 1 1 )
y Jazaz..an Jajaz..an Jaiaza4..0n " Jajazas..an-1)'

By applying the Cauchy Schwarz inequality,(X. y) < |Ix|] ||y|| we get:
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Jai—1 4 Jaz—1 4 Jasz—1 Foe < \/a1—1+a2—1+a3—1+m_

Jaiazaz..aq  Jajazas..ap  \Jaiazaz..a, a, a, as

1 1 1
_l_ + + oo,
ap0as...an a,0as...an aay ..an

Now multiply \/alaz Q3 ... Ay across the sign, we get:

\/a1—1+\/a2—1+\/a3—1+---s(1—ail+1—aiz+1—ai3+---+

1—%)-

\/a1+a2 + a3 + +an

< \/n—(i+i+i+---+ai)-\/a1+a2+a3+---+an
n

a, a as

<Jyn—-m-1-Jaa; +az+-+ay,

<V1-Jaj,a, +as;+ - +a,

aar =1+ Ja, -1+ Jaz =14+ Ja, -1 <

Ja+ a;+ a3+ +ay.

Inequality 3.2:
ifa.b.c.d belongto R, then (@ + b + ¢ + d)z < 4(612 +b%+c? + dz)

Proof:
Let, X = ((,l. b.c. d) _’)7) = (1111), be any two vectors, by applying the Cauchy Schwarz
inequality, (X.37) < [IX[|[7']] , we get
a+b+c+d<va?+b%+c?2+d>V12+12+12 +12
< VaZ + b2 + 2 +d%/4,
squaring both sides, then we have:

(a+b+c+d)?< 4(a®? + b? + c?).

corollary 3.4:
ifdq, Ay, Ag,...ay belong to R, then:
(a4 ay+ az + - +ay)* <n(af+a3+a3+-+a3)

Proof:
Let, X = (ay.a,.as. ....a,). ? = (k.k.k ....k), By applying the Cauchy Schwarz
inequality,(J_C). ?) < ”)_C)” ”?” , we get:
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ak + ak+azsk+ -+ Kka, <+ Ja?+a:+at+-+ aZVkZ+kZ+ k2 + - k2
k(a; + a, +ag+ - +a,) < Ja?+a2+a+ -+ a2-Vnk?
k(a; + ay +as+-+a,) < Ja?+a2+a2+-+ a2 -kvn
(a4 a +ag+-+a,)<Ja?+a2+a+-+ a2-vn
Squaring both sides, then we get:
(e, + a, +ag + -+ a,)? <n(af +as+a3+-+ a2).

Corollary3.5: given 44, 4y, A3,..ay, suchthat a4 + A, + az + +-+ + a,, = 1, then the minimum

valueof a? + a3 + a§ + 4 d? s %
Proof:

Let, X = (ay.a5.a3.....a,), }7) = (1.1.1....1), be any two vectors, By applying the
Cauchy Schwarz inequality, (x. 7) < ||J_C)||||7)|| , we get: a, + a, +as+
cta, a2+ aZ+aito+ aiV1Z+ 12+ 12 4 -+ 12

(@ + ay+az+-+a,) < Ja?+a?+a%+-+ az-Vni?

(a, + a2+a3+---+an)£\/af+a§+a§+---+ a2 -vn

1<Ja?+a2+a%+-+ a2-Vn
squaring both sides, then we get:
(D2 <n(ai+aé+a3+-+ a2).
1
%Sa%+a§+a§+---+ ai

1
af +a3+a3+-+ ap <

1
Therefore, the minimum value of @ + a3 + a§ + -+ alis —
1 1

Corollary 3.6: if 4. b. C belong to R, then the minimum value of (a+b+c) (E + 5 +
1
=i 19.
C)lsequa
Proof:

N N 1 1 1
Let:X = (\/E \/E \/E) y = ( = \/_E . \/_E) , be any two vectors, by applying the Cauchy

Schwarz inequality, we get:

B
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1+1+1<Va+b+c: |-+ +-
3<Va+b+c: |-+ +-

1 1 1
squaring both sides, thenwe get: 9 < (a + b + ¢) (E + 5 + Z)
1 1 1
. LREREA PN
(@+b+c)(3+3+3)209.
1 1 1

2 the minimumvalue of (@ + b + ¢) (Z + 5 + ;) isequal 9.
Corollary 3.7:if a4, 4,, A3,...Ay, belong tofR then

(a, + a; + az + - +an)( +— + ~t et ) >n?.
ai an

az

Proof:

N — 1 1 1 1
Let, X = (\/a_l.\/a_z.,/a3 ....,/an). y = <\/a_'\/a_2' = \/a_n> , be any two

1

vectors,

by applying the Cauchy Schwarz inequality, we get:

1+1+1+w+1£(%+wh+a3+m+a@-$}+%+34~~+i
1 2

as an

nSVm1+a2+ayF"+%fJ—+ +=— -+ o
a

n

squaring both sides, then we get: n? < (Cl +b+c) ( + + + T )

an

~(ag+ a, + az + - +an)( + = + + +a)2n.
a n

a
Corollary 3.8:let aq, a,,..., an belong to R, such that a4 + a, +as + -+ a, =1, then the

minimum value of: —+ + + +—, is n2
a; as an

Proof:

%= (Ve as o).y (rrf_ F) e

vectors, By applying the Cauchy Schwarz inequality, we get:

1+1+1++1<(a;+ a,+ az+--+ay)- —+ + + +—

an

ns¢%+ch+ayw~+mfj—+ 4—-+ +—
a

an

squaring both sides, then we get:
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n?<(atbto)(sHo ot n)

2

alag+ ap + as + - +an)( +4— + )20
1 Tl

az

(FHotot+)zn?
a, n

az

1 1 1
then the minimum value of — + — 4 —4 -+ — s n2.
a a as an

Corollary 3.9: If x2% + yz + 72 +w? = 1, X.Y.Z.W belongto R, then:
x+2y+3z+4w < V30.

Proof:
= (XyZ w). 7 = (1234), be any two vectors, by applying the Cauchy Schwarz
inequality, we get:
X+2y+3z2+4w < \x2 + y2 + 22 + w212 + 22 4 32 4 42
x + 2y + 3z + 4w < V/30.

Corollary 3.10:
hcalz + a22 + a32 + -+ anz =1, a,,ay,as,.. A4y belong to R, then

a + 2a, + 3as + -+ na, < [FODED

X = (ay.a,.a3.....a,). }_1> = (1.2.3.4.......1), by applying the Cauchy Schwarz

Proof:

inequality, we get:
a, + 2a, + 3a; + 4a, + -+ na,
<Va 2+ a2+ a2+ + a2 12+ 22 + 32 + 42 + - 4 02

a1+2a2+3a3+4a4+---+nanS\/T-\/12+22+32+42+...+n2
ay +2a; +3a; + 4a, + -+ na, <V12+22 432442 + -+ n?

a1+2a2+3a3+4a4+---+nanS w

b+c c+a a+b

Problem 3.1: ifa. b. c belong to R, then prove that: o + b + p <6
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Proof:

let X = (\/E\/F\/E) )7)= (\/iaib\/iE)' by applying the Cauchy Schwarz

inequality,(i?) < ||§||||)_/)”,we get:l +1+1<+Va+b+c ’% + % + %
3<vVa+btc [-+y+-
squaring both sides, then we have:

9s(a+b+c)(%+%+%).

9 < (a+2+c) n (a+b+c) n (a+b+c).

IS 1+ 4+1+25414+22
9S3+b‘-il-c+a;-c+a+b
6Sb+c_i_a+c_|_a+b

a b c

Problem 3.2:
b C
+

if . b and. C are the sides of a triangle, then: =
b+c-a c+a—c a+b-c

Proof:

- — 1 1 1
Let, X = (\/E \/B \/E) y = (_ﬁ\/_E) be any two vectors, by applying the Cauchy

a

Schwarz inequality, <)_C))_/>) < ”3_5””}_1)” ,
a C

we get: 1+1+1<+vVa+b+c- %-I‘%'F%. b

3<va+b+c: %+%+%.

1 1 1
squaring both sides, thenwe have: 9 < (a + b +¢) - (Z + 5 + ;)

Figure 6 : triangle of sides

a+b+c a+b+c a+b+c
9 < ( ) n ( ) n ( )‘
“ b+c b b a+c c ¢ a+b
a
9I<—-F+—+-+—+-+—.
a ba+ b b+ c C+b
c a+c a
9Sl+7+1+7+1+7‘
b+c a+c a+b
9<3+—+—+
b+c a a+c b a+ c
6-3<———+———+——-
a a b b c c
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b+c—a a+c-b a+b-c

3< +
a b c
b+(cl—a a+lc)—b + a+f—c >3
ISCUSSION:

The study was able to achieve fourteen results in total are different inequalities at the sides of each one of
them a unique series suggests the generation of more in many spaces, which can be called the space of
Cauchy inequalities, which can contribute to the increase of knowledge stocks and the possibility of
application in different scientific aspects.
The importance of this inequality of Cauchy Schwarz of vectors, in the multiple proofs, which may be 40
proofs, this paper was able to study 11 of them, which are based on the following ideas: Pythagorean
theorem, inner product of vectors, quadratic function, cosine formula, orthogonality, mathematical
induction.
These results enable us to find the minimum value of the series or the maximum value of it, which
contributes to the concept of optimization.
Some of the results were directly related to the sides of the triangle, which contributes to the generation of
new and diverse relationships in the geometric space.
Conclusion: Cauchy - Schwarz inequality differentiated by many different proofs, which gained

importance in producing a variety of mathematical inequalities and providing proofs. This paper provided

different proofs for this inequality that allowed to conduct such studies.

RECOMMENDATIONS:

1.

2.

Based on the results of our research and discussions, we recommend the following studies:
To conduct a study dealing with different proofs of this inequality in the space of functions with
applications in the space of the numerical analysis.
A comparative study dealing with Cauchy Schwarz inequality with some of the famous inequalities with
applications in the geometric spaces.
Conducting an advanced study on the role of Cauchy Schwarz inequality in solving mathematical

problems with applications on topological space.
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