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Abstract: In abstract algebra, an algebraic structure is a set with one or more finitary operations defined on it that satisfies a 

list of axioms. Algebraic structures include groups, rings, fields, and lattices, etc. A group is an algebraic structure (𝐺, ∗), 

which satisfies associative, identity and inverse laws. An Abelian group, also called a commutative group, is a group in which 

the result of applying the group operation to two group elements does not depend on the order in which they are written. 

That is, these are the groups that obey the axiom of commutatively. The concept of an Abelian group is one of the first 

concepts encountered in abstract algebra, from which many other basic concepts, such as rings, commutative rings, 

modules and vector spaces are developed. This study sheds the light on the structure of the finite abelian groups, basis 

theorem, Sylow„s theorem and factoring finite abelian groups. In addition, it discusses some properties related to these 

groups. The researcher followed the exploratory and comparative approaches to achieve the study objective. The study has 

shown that the theory of Abelian groups is generally simpler than that of their non-abelian counter parts, and finite Abelian 

groups are very well understood.  
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1. Introduction  

An algebraic structure is a set with one or more finitary operations defined on it that satisfies a list of 

axioms. Examples of algebraic structures include groups, rings, fields, and lattices. Addition and 

multiplication on numbers are the prototypical example of an operation that combines two elements of a 

set to produce a third. These operations obey several algebraic laws [1]. 

An abelian group, also called a commutative group, is a group in which the result of applying the 

group operation to two group elements does not depend on the order in which they are written. That is, 

these are the groups that obey the axiom of commutatively. Abelian groups generalize the arithmetic of 

addition of integers. The concept of an abelian group is one of the first concepts encountered in 

undergraduate abstract algebra, from which many other basic concepts, such as modules and vector 

spaces are developed. The theory of abelian groups is generally simpler than that of their non-abelian 

counterparts, and finite abelian groups are very well understood [2] 

Importance of Study 
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The study is important for researchers and students specialized in Algebra. It provides them with 

set-theoretical backgrounds of abelian groups through exploring their fundamental types and main 

properties. 

 

To achieve the study objective, the researcher followed the exploratory and comparative approaches to 

achieve the study objective. 

1.1 Algebraic Structures: Basic Definitions and Results 

 1.1.1 Definition of set S [3] 

A set S is a collection of well-defined objects, and those objects are called the elements or members) of  . 

 1.1.2 Definition of finite set [4]  

A finite set is a set whose elements are enumerable and it can be described by listing its elements 

inside   . 

  We also say that they belong to that set (we denote this by  ) 

 1.1.3 Definition of infinite set [4]  

 An infinite set is a set whose elements are none numerable. 

 1.1.4 Definition of union [5] 

 The union of two sets   and Nis the set of all elements each of which belongs to at least one of 

the two sets. The union of two sets is symbolized by      . 

 1.1.5 Definition of intersection [5] 

 The intersection of two sets   and Nis the set of elements each of which belongs to both sets. 

The intersection of two sets is symbolized by      . 

1.1.6 Definition of   [1] 

A natural number   is prime if       and there is no factorization        , where       and 

      are natural numbers. 

1.1.7 Theorem (Mathematical Induction) [7] 

 Let      be a property (possibly with parameters). Assume that 

 (i)      holds. 

(ii) For all          implies       . 

Then   holds for all-natural numbers   . 

1.1.8 Theorem (Division Algorithm) [1] 

Given integers   and   with    ,    there exist unique integers   and   with  

                 and                   

1.1.9 Definition [1] 
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 If   and   are integers, then   is a divisor of   if there is an integer   with        We also say that   

divides   or that   is a multiple of  , and we denote this by    . 

1.1.10 Definition [24] 

Let   and   be nonzero integers. A common divisor of   and  is an integer that divides both   and  . 

We define         , or the greatest common divisor of   and  , to be the largest positive common 

divisor of   and  . (Note that   is always a common divisor of any two integers). 

 

1.1.11 Theorem (Euclid’s Lemma) [1] 

If   is a prime and     , then     or    . More generally, if a prime p divides a product     ···   , 

then it must divide at least one of the factors   . 

1.1.12 Definition [14] 

If     and  are sets, then their Cartesian product      is the set of all ordered pairs     , where 

      and      . 

 1.1.13 Example [14] 

The plane is      . 

1.1.14 Definition [16, 6] 

Let    and  be (not necessarily distinct) sets.  A function   from    to  , denoted by  

         , 

Is a subset    ⊆ X × Y such that, for each      , there is a unique       with        . 

For each      , the unique element     for which        is called the value of  at  , and   

is denoted by     .Thus,   consists of all those points in      of the form (       ) When  : R 

→ R, then    is the graph of      . 

Here we say is the domain of  , and   is the target (or codomain) of   , and define the image (or range) 

of  , denoted by     , to be the subset of   consisting of all the values of  . 

a well-defined function is therefore one whose formula produces exactly one value in its codomain for 

every input from its domain. 

1.1.15 Definition [1] 

A function          is a surjection (or is onto) if 

           
Thus,   is surjective if, for each      , there is some       with           Surjections are 

often called epimorphosis. 

1.1.16 Definition [1] 

A function           is an injection (or is one-to-one) if, whenever   and    are distinct elements of 

 , then               .  
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 Equivalently   is injective if, for every pair  ,        we have 

               implies     . 

Injections are often called monomorphisms. 

1.1.17 Definition [1] 

 A function          is a bijection if it is both an injection and a surjection. 

1.1.18 Definition [2] 

A group is anon empty set 𝐺on which there is defined a binary operation 

        Satisfying the following properties: 

Closure:  If   and   belong to 𝐺, then    is also in 𝐺; 

Associativity:                   for all        𝐺; 

Identity: There is an element in𝐺such that       for all in 𝐺 

Inverse:  If   is in 𝐺there is an element    in 𝐺such that                  

1.1.19 Definition [7] 

A set 𝐺 together with a binary operation           𝐺  𝐺  𝐺is called a magma. When the 

binary operation is associative,  𝐺    is called a semi group. 

1.1.20 Definition [18] 

A finite group is a group with a finite number of elements 

1.1.21 Definition [2] 

A group 𝐺 is an abelian group if the binary operation is commutative, i.e.,  

        
for all    in 𝐺. 

 

1.1.22 Lemma [1] 

Let  𝐺 ∗  be a group 

(i) The cancellation law should : If either 

 ∗     ∗   or  ∗    ∗  , 

Then     . 

(ii) The element is the unique element in𝐺with 

 ∗      ∗   
For all   𝐺  

(iii) Each   𝐺has a unique inverse: There is only one element     𝐺with 

 ∗             ∗    
(Henceforth, this element will be denoted by   ). 

(iv)               For all    𝐺. 
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1.1.23 Proposition [1] 

The notation  is the natural way to denote  ∗  ∗   ∗   ( -times). 

However, if the operation is  , then it is more natural to denote                

( -times) by   . Let 𝐺be a group written additively; if     𝐺 and   and   are (not necessarily 

positive) integers, then: 

(i)                   
(ii)              
(iii)                   

1.1.24 Proposition (Laws of Exponents) [1] 

Let 𝐺 be a group, let      𝐺, and let and  be integers. 

(i) If   and   commute, then            . 

(ii)            . 

1.1.25 Definition [1] 

A subset   of a group 𝐺is a sub group if 

(i)    ; 

(ii)         ,then    ; 

(iii)       then       

If is a subgroup of𝐺 ,we write   𝐺;A subgroup H ≠ G is called a proper subgroup, then we write 

   𝐺. 

1.1.26 Proposition [1] 

A subset   of a group 𝐺 is a subgroup if and only if   is nonempty and, whenever 

       , then            

1.1.27 Proposition [1] 

The intersection ⋂       of any family of subgroups of a group 𝐺 is again a subgroup of 𝐺.  In 

particular, if  and   are subgroups of 𝐺, then       is a subgroup of 𝐺. 

 

1.1.28 Definition [2] 

The order of the group𝐺, denoted by  𝐺 , is simply the number of elements in 𝐺 

1.1.29 Definition [6] 

A finite group can in principle be specified by a Kayley table, a table whose rows and columns are indexed 

by group elements, with the entry in row   and column   being   . 
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Table   Kayley table 

Table  (a)    Table  (b)    

1.1.30 Examples [6] 

Here are two examples (Table ) 

 

        ◦                ◦ 

                           

                           

                           

                           

 

 

 

 

1.1.31 Definition [1] 

If 𝐺is a group and    𝐺, write               all powers of  ; 

    is called the cyclic subgroup of  𝐺 generated by . A group 𝐺  is called cyclic if there exists 

  𝐺with𝐺     , in which case   is called a generator of 𝐺. 

1.1.32 Lemma [2] 

A finite cyclic group generated by   is necessarily abelian, and can be written as 

                   where      , or in additive notation,                    , 

with         

1.1.33 Proposition [1] 

Let 𝐺 be a finite group and let   𝐺.Then the order of   is      , the number of Elements 

in     

1.1.34 Definition [6] 

The order of an element   of a group 𝐺 is the smallest positive integer   such that      , if one 

exists; if no such   exists, we say that   has infinite order. 

1.1.35 Theorem [1] 

If     𝐺 is an element of order  , then       if and only if      .  

1.1.36 Lemma [1] 

A cyclic group of order   has a unique subgroup of order  , for each divisor   of  , and this subgroup is 

cyclic.  

1.1.37 Theorem (Lagrange’s Theorem) [6] 

The order of a subgroup of a group 𝐺divides the order of 𝐺. 
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1.1.38 Proposition [1] 

If 𝐺 is a finite group, then every     𝐺 has finite order. 

1.1.39 Definition [1] 

If   is a prime, then a finite group 𝐺 is called a p-group if 𝐺     for some      . 

1.1.40 Theorem (Higman, Neumann and Neumann) [14] 

 Any countable group can be embedded in a group with two generators. 

 

2. Normal Subgroups 

2.1 Definition [2] 

Let   be a subgroup of the group 𝐺.If     𝐺 , the right coset of   generated by    is 

                  
similarly, the left coset of   generated by    is  

                  
It follows from the definitions that if       𝐺, then 

       if and only if        , and 

       if and only if        . 

Thus, if we define   and   to be equivalent if        , we have an equivalence relation, and the 

equivalence class of   is  

                    
2.2 Lemma [1] 

Let   be a subgroup of a group 𝐺, and let       𝐺. 

(i)          if and only if        . In particular,         if and only if 

      
(ii) If       ,then       

(iii)         for all  𝐺 

2.3 Definition [7] 

A subgroup   of the group 𝐺 is a normal subgroup if  

          for all          𝐺. 

 We indicate that   is a normal subgroup of 𝐺 with the notation N  G. 

2.4 Proposition [2] 

If     𝐺and     𝐺, then      𝐺 if and only if        . In this case,    is the 

subgroup generated by     . 

2.5 Definition [7] 
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The group of cosets of a normal subgroup   of the group 𝐺 is called the quotient group or the factor 

group of 𝐺by  . This group is denoted by 𝐺   which is read “𝐺         ” or “𝐺      ”. 

2.6 Proposition [2] 

Let   be a subgroup of 𝐺. If any of the following equivalent conditions holds, we say that   is normal 

subgroup of 𝐺, or that   is normal in 𝐺:  

(i)      ⊆    for all     𝐺 (equivalently,      ⊆    for all     𝐺)  

(ii)          for all     𝐺 (equivalently,      ⊆    for all     𝐺) 

(iii)         for all     𝐺 

(iv) Every left coset of   in 𝐺 is also a right coset 

(v)  Every right coset of N in 𝐺 is also a left coset 

2.7 Definition [18] 

The centre of group𝐺  is 

   𝐺                 𝐺  
It is denoted by   𝐺   

2.8 Corollary [18] 

The centre of group 𝐺  is a normal subgroup of 𝐺. 

2.9 Definition [1] 

The index of a subgroup  in 𝐺, denoted by  𝐺      , is the number of left cosets of   

in 𝐺. 

2.10 Lemma [6] 

Let H be a subgroup of G of index 2. Then a2  H for all a   G. 

 

3. Homomorphism 

3.1 Definition [2] 

If   𝐺    ,where𝐺and    are groups,  then  is said to be 

a homomorphism if for all     in 𝐺, we  have 

                  
This idea will look familiar if 𝐺and   are abelian, in which case we write, using additive 

notation,                     ; 

thus, a linear transformation on a vector space is, in particular, a homomorphism on the underlying 

abelian group. 

 

3.2 lemma [12] 

Set of all homomorphism from 𝐺to  is denoted by     𝐺            𝐺    
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3.3 Proposition [2] 

 A homomorphism   is injective if and only if its kernel   is trivial, that is, consists only of the identity. 

3.4 Lemma [2] 

Some Standard Terminology 

Monomorphisms = injective homomorphism 

Epimorphism = surjective homomorphism  

Isomorphism = bijective homomorphism 

Endomorphism = homomorphism of a group to itself 

Automorphism = isomorphism of a group to itself 

3.5 Definition [1] 

Two groups 𝐺 and   are called isomorphic, denoted by 𝐺    , if there exists an isomorphism   

 𝐺    between them. 

3.6 Definition [1] 

A property of a group 𝐺  that is shared by any other group isomorphic to it is called an invariant of 𝐺  

3.7 Example [1] 

The order  𝐺  is an invariant of 𝐺, for isomorphic groups have the same orders. Being abelian is an 

invariant [if   is an isomorphism and   and   commute, then  

       and 

                                           ; 

hence,       and       commute. 

 

3.8 Definition [1] 

If   𝐺     is a homomorphism, define 

kernel         𝐺              

and image                       for some     𝐺}. 

We usually abbreviate kernel f to       and image  to     . 

3.9 Example [1] 

 (i) If    is the multiplicative group          , then              is a homomorphism. The 

kernel of sgn is the alternating group   , the set of all even permutations.  

(ii) Determinant is a surjective homomorphism      𝐺           , the multiplicative group of 

nonzero real numbers, whose kernel is the special linear group         of all     matrices of 

determinant  .  

 

 



Journal of Natural Sciences, Life and Applied Sciences - Issue (3) 1 - October 2017  

A Study On Finite Abelian Groups ﴿55﴾  Al-Johani  
 

3.10 Theorem [12] 

If   and   are vector spaces over   of dimensions   and   respectively, then          is of 

dimension    over  . 

 

3.11 Corollaries [13] 

If    𝐺    is a homomorphism, the following hold: 

(i) If   is the identity of 𝐺, then      is the identity of  ;  

(ii) For all   in 𝐺  and for all   in  ,              .  

in particular,                 ; 

(iii) If   is a subgroup of 𝐺, then      is a subgroup of  ; 

(iv) If   is a subgroup of  , then        is a subgroup of G; 

(v) If   𝐺 is of finite order, then        divides     ; 

(vi)   〈 〉    〈     〉; 

(vii) If 𝐺 is abelian, so is   𝐺). 

 

3.12 Theorem [13] 

Let   be a normal subgroup of the group 𝐺 and denote the set right (or left) cosets by 𝐺   on     

define an operation     by  

          
Then    is a well-defined operation and  𝐺      is a group called the factor group 𝐺      . 

Furthermore, the map  

  𝐺   𝐺   
defined by                                                         

is an epimorphism, called the natural homomorphism from 𝐺 onto 𝐺  , whose kernel is  . 

3.13 Theorem (Factor Theorem) [2] 

 Any homomorphism   whose kernel   contains   can be factored through 𝐺  . In other words, there 

is a unique homomorphism  ̅   𝐺       such that  ̅       . Furthermore,  

(i)   ̅is an epimorphism if and only if   is an epimorphism; 

 (ii)   ̅is a monomorphism if and only if      ; 

(iii)   ̅is an isomorphism if and only if   is an epimorphism and      . 

 

3.14 Theorem (First Isomorphism Theorem) [2] 

If    𝐺     is a homomorphism with kernel  , then the image of   is isomorphic to 𝐺    

3.15 Theorem (Second Isomorphism Theorem) [2] 
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If   and N are subgroups of 𝐺, with   normal in 𝐺, then  

              . 

3.16 Theorem (Third Isomorphism Theorem) [2] 

If   and   are normal subgroups of 𝐺, with   contained in  , then 

𝐺      𝐺           
a “cancellation law”. 

 

4. Direct Products 

4.1 Definition [8] 

Let 𝐺 be a group with identity   , and let   and   be normal subgroups of 𝐺 such that  ⋂   

    . The internal direct product of   and   is the subgroup 

                        of   𝐺  

4.2 Definition [8] 

let𝐺 and   be groups with operations    and ∗   respectively. The external direct product𝐺    of 

𝐺 and   is the Cartesian product 𝐺   , together with an operation that is, 

                            ∗     
Where        G   and    ,    and                 𝐺     

 

4.3 Proposition [24] 

The following properties hold, which concern the direct product of groups. 

(i) The commutative property:          .  

(ii) The associative property:                  . This allows us to simply write 

multiple products without brackets, e.g.,        

(iii) The substitution property:  

If       and       , then            . 

(iv) The cancellation property: 

 If       and            , then         

 

4.4 Theorem [8] 

Let 𝐺 and   be groups. Then 𝐺    is also agroup. 

4.5 Theorem [8] 

Let 𝐺 and   be groups with identities    and   , respectively. Then  

𝐺                   𝐺  
And  
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are both subgroups of 𝐺     

4.6 Proposition [2] 

 If 𝐺 is the internal direct product of   and  , then 𝐺 is isomorphic to the external direct product 

    . 

4.7 Proposition [7] 

A group 𝐺 is a direct product of subgroups       if and only if  

(i) 𝐺      , 

(ii)          , and  

(iii)  every element of    commutes with every element of     

4.8 Proposition [7] 

 A group 𝐺 is a direct product of subgroups  ,    if and only if  

(i) G =    ,  

(ii)      ={e}, and  

(iii)    and    are both normal in 𝐺. 

 

5. Abelian Group 

5.1 Definition [1] 

If   and    are subgroups of an abelian group 𝐺, then 𝐺 is the direct sum, denoted by  

𝐺        , 

 If         𝐺 (i.e., for each    𝐺, there are      and        with           ) and 

             
5.2 Theorem [24] 

 Let 𝐺 be a group with two normal subgroups   and  , with the conditions that 

                   and                 𝐺  

Then                                                           𝐺       .  

Where             and      

The hypothesis of this theorem is sometimes used as the definition of 𝐺 being the internal direct product 

of   and  . In other words, the theorem states that internal implies external. Conversely, given 𝐺  

     , we have two normal subgroups, i.e.,             and            whose 

internal direct product recovers 𝐺. Hence, the two notions of external and internal direct products are 

actually equivalent. 

Proof. We first show that every element of   commutes with any other of  . Let      and    

  . We note that 
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Because   is normal, and similarly 

                          
However,             so we see that 

             
i.e.,                                                                     . 

This result opens the way for a homomorphism               defined by 

            . 

 As we can check, 

 (            ) 

             
         
         

                 
Since      𝐺, we are only left with showing that   is one-to-one and onto. Well, onto is obvious by 

the very definition of   . For one-to-one, let  

                   
so that                                                                 

then                                                                    .  

the left side belongs to   and the right to  .  

this is possible only if both be the identity element. Thus  

      and       , 

Completing the proof.  

5.2 Proposition [1] 

The following statements are equivalent for an abelian group 𝐺 and subgroups   and  of 𝐺. 

(i)  𝐺        . 

(ii)  Every     𝐺 has a unique expression of the form 

          , 

Where       and      .  

(iii) There are homomorphisms    𝐺      and   𝐺      , called projections, and        𝐺 

and          𝐺, called injections, such that 

                                                     and              . 

5.3 Remark [1] 

The equations         and         imply that the maps   and   must be injections and the maps 

  and   must be surjections.  
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Proof. (i) ⇒ (ii) By hypothesis, 𝐺        , so that each     𝐺 has an expression of the form 

          with     and    . To see that this expression is unique, suppose also that 

           , where       and 

     . Then                gives                         Therefore, 

      and     , as desired.  

(ii)⇒(iii) If     𝐺, then there are unique     and     with         . The functions  and 

 , given by  

            and              

are well-defined because of the uniqueness hypothesis. It is routine to check that   and   are 

homomorphisms and that all the equations in the statement hold. 

 (iii)⇒(i) If     𝐺, the equation            gives 

                      
because       and        . 

If      , then        and             ; if    , then        and          

  . Therefore, if      , then      . Hence, 

                       𝐺 and𝐺       

5.4 Corollary [1] 

Let   and   be subgroups of an abelian group 𝐺 If 𝐺          then 

                 
Conversely, given abelian groups   and  , define subgroups      and        of 

      by 

                                                          
then                . 

Proof. Define                  as follows. If        , then the proposition says that 

there is a unique expression of the form          , and so             is a well-defined 

function. It is routine to check that    is an isomorphism. 

Conversely, if                , then 

                            
And                                                                      

Hence,                                                                

 

5.5 Definition [1] 

 If             are subgroups of an abelian group 𝐺, define the finite direct sum          

   using induction on      : 
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 We will also denote the direct sum by  

∑                   
5.6 Proposition [1] 

 If 𝐺  𝐺      𝐺  are abelian groups and    ⊆ 𝐺   are subgroups, then 

 𝐺        𝐺                    𝐺               𝐺       
Proof. Define   𝐺        𝐺     𝐺               𝐺      by 

                                    
Since   is a surjective homomorphism with 

                   , 

the first isomorphism theorem gives the result.   

If 𝐺 is an abelian group and   is an integer, let us write 

 𝐺            𝐺 . 

It is easy to see that  𝐺 is a subgroup of 𝐺. 

5.7 Definition [1] 

Let     〈         〉 be an abelian group. If       〈  〉        〈  〉  

Where each 〈  〉    , then   is called a (finitely generated) free abelian group with basis         . 

More generally, any group isomorphic to  is called a free abelian group. 

5.8 Theorem [7] 

Le   be free abelian with basis                , 𝐺 an arbitrary abelian group and       

 𝐺 any function. Then there is a unique homomorphism        𝐺 such that 

                        for all       

Proof. If    〈  〉, define          𝐺 by                 . It is easy to see that    is a 

homomorphism. To define  let     . Then there are uniquely determined integer coefficients such 

that     ∑        . We define   by 

     ∑            ∑             
Because each    is a homomorphism it follows that   is a homomorphism. If  

       𝐺is another homomorphism such that              , for all      , then 

      ∑           ∑           ∑                  
5.9 Theorem [7] 

 Every abelian group 𝐺  is a quotient of a free abelian group. 

5.10 Proposition [1] 

If    denotes the direct sum of   copies of , then        if and only if      . 

Proof. First, for any abelian group  𝐺, that if  

𝐺  𝐺        𝐺 , then  𝐺    𝐺          𝐺 . It follows that 

𝐺  𝐺    𝐺   𝐺            𝐺   𝐺    
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so that                                                     𝐺  𝐺      .   

Similarly, if                                                       ,  

then                                                                              .  

Finally, if                                            𝐺              ,  

Then                                         𝐺  𝐺                              .  

We conclude that      . 

Proof. If          is a basis of  , then      , and if           is another basis of , then 

     . Therefore,      .  

5.11 Definition [1] 

If   is a free abelian group with basis          , then  is called the rank of  , and we 

write           . 

5.12 Definition [7] 

An abelian group 𝐺 has generators                      and relations  

∑                   

in case 𝐺      , where   is a free abelian on   and   is the subgroup generated by 

{∑      
 
                    

5.13 Proposition [6] 

Let   be a normal subgroup of 𝐺. Then 𝐺   is abelian if and only if           for all       𝐺.  

Proof. First assume that 𝐺   is abelian and take any     in 𝐺. Then the product of the factor groups' 

   and    can be written as  

                                     
The factor group containing      can be written as 

                                    
                                                   
                                                      

                                                       
                 
Therefore, we conclude that                  must be in  .  

Assume that           for any       𝐺. Since   is normal, then 𝐺   is defined 

and                . Recall this is the identity element, so 

                          
                                   

                                                                                         
                       

 

𝑗    
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 Hence,  

                 
                              
                                        
 Therefore, 𝐺   is abelian. 

5.14 Proposition [6] 

Let 𝐺 be a group. 

(i) The derived subgroup 𝐺  is normal in 𝐺. 

(ii) The derived subgroup 𝐺  is the smallest normal subgroup of 𝐺 such that 𝐺 𝐺  is abelian, or more 

precisely, if   is a normal subgroup of 𝐺, then 𝐺   is abelian if and only if 𝐺  ⊆   .  

Proof. For (i), it will suffice to show that any element              𝐺  and     𝐺 exhibits 

       𝐺 . Since we have                      , then we will insert          

between each element of         to obtain  

                                     
From the product          we obtain 

                                       
                                                                      
                                                                    

                                                                               
Therefore,          𝐺    

For (ii), first note that if  𝐺  ⊆   , then any element         𝐺  is also in  . From here, we can 

directly apply Proposition 3.1.16to justify the claim that 𝐺   is abelian if and only if 𝐺  ⊆   . 

5.15 Theorem [13] 

If 𝐺   𝐺 ⁄ is cyclic, then 𝐺 is abelian. 

Proof. Letting   𝐺    , we have 𝐺  ⋃        since 𝐺  ⁄  is cyclic. If   and   are elements 

of 𝐺 there exist    and    in   and   and   in   such that        and c=     . Therefore  

         
               

       =     
        

since    and    are in the centre of 𝐺. 

 

6. Basis Theorem 

It will be convenient to analyze abelian groups “one prime at a time.” Recall that a p-group is a finite group 

𝐺 of order    for some       . When working wholly in the context of abelian groups,  -groups are 

called  

 -primary groups. 
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6.1 Definition [1] 

If   is a prime, then an abelian group 𝐺 is p-primary if, for each     𝐺, there is       with 

         
If 𝐺 is any abelian group, then its p-primary component is 

𝐺         𝐺           for some         

6.2 Theorem (Primary Decomposition) [1] 

 (i) Every finite abelian group 𝐺 is a direct sum of its  -primary components:  

𝐺   𝐺       𝐺    

 (ii) Two finite abelian groups 𝐺 and 𝐺  are isomorphic if and only if 𝐺   𝐺  for every prime  . 

Proof. (i) Let     𝐺 be nonzero, and let its order be  . There are distinct primes           and 

positive exponents           with 

      
        

  . 

Define         
  , so that   

       . It follows that      𝐺   for each   (because       ). 

But the gcd   of           is   (the only possible prime divisors of   are          ; but no    is a 

common divisor because      ); hence, there are integers           with    ∑      . Therefore, 

    ∑     
 

  𝐺       𝐺    

Write     𝐺   𝐺      �̂�       𝐺  . It suffices to prove that if 

    𝐺         

then      . Since   𝐺  , we have    
        for some       Since       , we have  

   ∑      , where   
        ; hence,       , where    ∏   

  
   . But  

  and   are 

relatively prime, so there exist integers   and   with        
      

Therefore, 

    (    
    )     

         

(ii) If    𝐺   𝐺  is a homomorphism, then    𝐺   ⊆  𝐺   for every prime  , for if        , 

then  

      (   )          

If   is an is omorphism then      𝐺   𝐺  is also an isomorphism [so that      𝐺 
  ⊆  𝐺  for 

all  ]. It follows that each restriction   𝐺   𝐺    𝐺 
  is an isomorphism, with inverse     𝐺 

 .  

Conversely, if there are is omorphisms     𝐺  𝐺 
  for all  , then there is an isomorphism 

   ∑ 𝐺   ∑ 𝐺 
  given by∑    ∑  (  )    

6.3 Definition [1] 

Let   be a prime and let 𝐺 be a p-primary abelian group. A subgroup   ⊆  𝐺 is a pure subgroup if, for 

all      , 
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     𝐺      . 

6.4 Lemma [1] 

If   is a prime and 𝐺 is a finite  -primary abelian group, then 𝐺 has a nonzero pure cyclic subgroup. 

6.5 Theorem (Cauchy) [24] 

Let   be a prime number. If any abelian group 𝐺 has order,  multiple of  , then 𝐺 must contain an 

element of order  . 

Proof. Let  𝐺       for some      . In fact, the claim is true if       because any group of 

prime order is a cyclic group, and in this case any non-identity element will have order  . We proceed by 

induction. Take any non-identity element     𝐺, say of order  . We are done if  divides  , for then 

    will have order  . Otherwise, consider the factor group 𝐺    𝐺    , of order  𝐺    

     . Since   is not a multiple of  , we may write  𝐺        for some      . We apply the 

induction hypothesis to conclude that 𝐺  contains an element of order  . According to the preceding 

exercise, then 𝐺 contains an element of order a multiple of  , and that suffices. 

6.6 Theorem [1] 

If     𝐺 is an element of order  , then        if and only if       

Proof. Assume that       . The division algorithm provides integers   and   with        

  where         . It follows that 

                           
If      , then we contradict   being the smallest positive integer with       . Hence,      and 

      . Conversely, if       , then  

                  . 

6.7 Theorem (Basis Theorem) [1] 

Every finite abelian group 𝐺 is a direct sum of cyclic groups of prime power orders. 

Proof. By the primary decomposition, Theorem 3.2.2, we may assume that 𝐺 is  

 -primary for some prime  . We prove that 𝐺 is a direct sum of cyclic groups by induction on 

  𝐺     . The base step is easy, 𝐺 must be cyclic in this case. To prove the inductive step, we begin 

to find a nonzero pure cyclic subgroup   ⊆  𝐺. We have  

  𝐺        𝐺           𝐺        𝐺  
 By induction, 𝐺   is a direct sum of cyclic groups, say: 

𝐺
 ⁄  ∑〈 ̅ 〉

 

   

  

where          . 

 Let     𝐺 and let  ̅ have order   , where  ̅      . We claim that there is  

    𝐺with       ̅         such that 
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order     order      

Now   has order   , where      . But             ̅   in𝐺  , so there is some 

      with       By purity, there is       with    =    . If we define          , 

then       and                  ̅. If  has order   , then  

     because      ̅; since      , the order of   equals     

For each  , choose     𝐺 with                    and with order  

     order   ; define   by  

   〈         〉  

Now       𝐺, because 𝐺 is generated by   and the   „s. To see that 𝐺      , it now 

suffices to prove that           If      , then    ∑      , where      . 

Now     , and so∑    ̅     in𝐺  . Since this is a direct sum, each    ̅   ; after all, for 

each  ,  

    ̅  ∑   ̅ 
   

 〈 ̅ 〉   〈 ̅ 〉    〈 ̅ 〉̂    〈 ̅ 〉       

Therefore,          for all  , and hence      . Finally, 𝐺       implies 

  𝐺                      , 

so that        𝐺 . By induction,   is 

a direct sum of cyclic groups, and this completes the proof.  

6.8 Theorem (Fundamental Theorem for Finite Abelian Group) [6] 

Any finite abelian group is isomorphic to a direct sum of cyclic groups of prime power orders.  

Proof. Let  𝐺     
    

        
  where each of the    are distinct primes. We get 𝐺   𝐺      

   𝐺    . Then each of the 𝐺     can be decomposed further such that 𝐺        
   

  

          
    where    is a cyclic group of order  . Therefore, we have that 𝐺 is omrophic to a 

direct product of cyclic groups of prime power order.  

6.9 Example [6] 

Suppose 𝐺 is a finite abelian group of order                  Then G is isomorphic to one of the 

following:  

                
            
            

               
               

                  
6.10 Theorem [7] 

Every finite Abelian group is the direct sum of cyclic  -groups. 
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Proof. Let   be a finite abelian group. We write  

                 , 

Where    is the Sylow-   subgroup of  ,              . Replace each    with a direct sum of cyclic 

groups. 

6.11 Theorem (Existence of Subgroups of Abelian Groups) [1] 

If 𝐺 is a finite abelian group and   is a divisor of  𝐺 , then 𝐺 contains a subgroup of order    

Proof. We prove the result by induction on      𝐺  for a prime divisor   of  𝐺   The base step 

      is true, for there are no prime divisors of  . For the inductive step, choose   𝐺 of order 

       If       , say          so   

has order   .  If       , consider the cyclic subgroup      〈 〉   

Now     𝐺, because 𝐺 is abelian, and so the quotient group 𝐺   exists. Note that  𝐺     

     is divisible by , and so the inductive hypothesis gives an element      𝐺   of order  . If   

has order  , then      . We have returned to the first case. 

Let   be any divisor of  𝐺   and let   be a prime divisor of  .  We have just seen that there is a subgroup 

     𝐺 of order .  Now     𝐺, because 𝐺 is abelian, and 𝐺   is   a group of order     . By 

induction on  𝐺 , 𝐺   has a subgroup  ∗ of order     . The correspondence theorem gives 

 ∗        for some subgroup   of 𝐺containing  ,   and          ∗         

 

6.12 Example [7] 

1) Let 𝐺 be an Abelian group of order            , and suppose we want to create a subgroup of 

order   . By the Fundamental Theorem of Finite Abelian Groups, we know 𝐺 is isomorphic to one of the 

following:  

      
         
         

            
            

               
we already know that               has a subgroup of order   . Suppose that we want to 

produce a subgroup of order   in         . We can do this by piecing together all of    and 

the subgroup of order  in   . In other words, we get                               

2)Let 𝐺 be an Abelian group of order           .we know 𝐺 is isomorphic to one of the following:  
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Now we know that               has a subgroup of order   . 

6.13 Remark [13] 

Let   be a prime. We set 𝐺         𝐺    is a  -element}. 

6.14 Theorem [13] 

Let 𝐺 be an Abelian group. Then 𝐺  is a characteristic  -subgroup of order 𝐺  .  

Proof. For      𝐺  also    is a  -element; use        . Thus,𝐺  is a subgroup. Since 

automorphisms map  -elements to  -elements, this subgroup is characteristic. 

Then 𝐺 contains a subgroup   of order  𝐺  . Hence,   is a  -group, and thus every element of   is a  -

element; in particular     𝐺 . If     𝐺 , then 

     𝐺          

and          (Lagrange„s theorem). But now theorem 3.2.12gives a subgroup   of order   in 𝐺  

since every element of   is a  -element. 

6.15 Theorem [13] 

 Let 𝐺 be an Abelian group. Then 𝐺       𝐺  

Proof. The product 𝐺 of the subgroups 𝐺 ,       𝐺 , is a direct product; and theorem 3.2.15yields  

|𝐺 |      𝐺          𝐺      𝐺    

so 𝐺    𝐺   

In an Abelian group, the product of two cyclic groups of coprime order is again cyclic.  Hence, the question 

whether an Abelian group is cyclic or not can already be decided in the subgroups 𝐺 ,       𝐺   

6.16 Definition [13] 

An Abelian  -group is elementary Abelian if        for all     𝐺. 

6.17 Theorem [13] 

  is an automorphism of the Abelian group 𝐺, if and only if     𝐺    .  

Proof. If     𝐺      , then Ker       . Conversely, if     𝐺      , then there exists a 

common prime divisor   of   and  𝐺 . The -subgroup 𝐺  is nontrivial, and there exists a subgroup of 

order   in 𝐺. This subgroup is contained in Ker   .  This gives for cyclic groups. 

 

6.18 Lemma [1] 

 Let 𝐺 be a finite Abelian group of order    , where   is a prime that does not divide  . Then 

𝐺       , where  

         𝐺     
 
           and         𝐺          . 

Also,          . 

6.19 Lemma [1] 

𝑝  𝜋 𝐺  

p π(G) p π(G) 
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Let 𝐺 be an Abelian group of prime-power order and let   be an element of maximal order in 𝐺. Then 𝐺 

can be written in the form       . 

6.20 Proposition [6] 

Let 𝐺 be a group with identity element   and suppose        for all     𝐺. Then 𝐺 is an abelian 

group.  

Proof. Suppose that for every     𝐺       . Let        𝐺. Then  

      
                      

by our hypothesis. Multiplying both sides of the equation                        

gives                                                                       

 So                                                                        

                   
        

             
        

                                                                                  
Hence, 𝐺 is indeed abelian. 

6.21 Corollary [12] 

Any group of order  𝐺     with   prime is abelian. 

6.22 Definition [1] 

 If 𝐺 is an abelian group, then its exponent is the smallest positive integer   for which 𝐺     .  

6.23 Corollary [1] 

 If 𝐺 is a finite abelian group and 𝐺                                is a cyclic group 

of order   and                , then    is the exponent of 𝐺.  

Proof. Since         for all  , we have             for all  , and so   𝐺     . On the other hand, 

there is no number   with           with            , and so    is the smallest positive 

integer annihilating 𝐺. 

 

7. The Sylow Theorem 

This section discusses the Sylow's theorem and its related results for finite case only. 

7.1 Definition [7] 

A finite group 𝐺 is a  -group if  𝐺      , for some prime   and positive integer  . A maximal  -

subgroup of a finite group 𝐺 is called a Sylow-  subgroup of 𝐺. 

7.2 Lemma [7] 

If   is a Sylow-  subgroup of 𝐺 and   is a  -subgroup of 𝐺 such that   ⊆   , then      . 

7.3 Definition [7] 

 Let   be a subgroup of a group 𝐺. A subgroup   of 𝐺 is conjugate to   if and only if           

for some     𝐺. 



Journal of Natural Sciences, Life and Applied Sciences - Issue (3) 1 - October 2017  

A Study On Finite Abelian Groups ﴿69﴾  Al-Johani  
 

 

 

7.4 Definition [7] 

Let   be a subgroup of 𝐺. The normalizer of   in 𝐺 is  

             𝐺              
7.5 Lemma [1] 

 Let   be a Sylow  -subgroup of a finite group 𝐺. 

(i) Every conjugate of   is also a Sylow  -subgroup of 𝐺.  

(ii           is prime to  . 

(iii) If     𝐺 has order some power of   and if          , then      . 

7.6 Corollary [1] 

A finite group 𝐺 has a unique Sylow  -subgroup  , for some prime  , if and only if  𝐺.  

Proof. Assume that  , a Sylow  -subgroup of 𝐺 , is unique. For each     𝐺, the conjugate       is 

also a Sylow  -subgroup; by uniqueness,          for all     𝐺, and so   𝐺.  

Conversely, assume that   𝐺. If  is any Sylow  -subgroup, then          for some     𝐺; 

but        , by normality, and so        

7.7 Theorem (Sylow)[1] 

If 𝐺 is a finite group of order    , where   is a prime and    , then 𝐺  has a subgroup of order   .  

Proof. We first show that    𝐺     . Now  

 𝐺         𝐺                     
The first factor,  𝐺             , is the number of conjugates of   in 𝐺, and so   does not divide 

 𝐺          because       mod .  

The second factor,                       , is also not divisible by  , by Lemma 3.3.5. 

Therefore,   does not divide  𝐺     , by Euclid„s lemma.  

Now        for some      , and so  

 𝐺        𝐺                    . 

Since   does not divide  𝐺     , we must have      ; that is,        

7.8 Proposition [12] 

Let 𝐺 be a group of order    where     are primes with       . Then 𝐺 is cyclic. More 

precisely, let   be a  -Sylow group (or Sylow  -group) and   a  -Sylow group of 𝐺. Pick     

   and        Then   generates 𝐺. 

In this section we study the structure of  -groups, finite groups all of whose Sylow subgroups are abelian. 

7.9 Definition [6] 

An  -group is a finite group, all of whose Sylow subgroups are abelian. 
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7.10 Definition [6] 

Let 𝐺 be a normal subgroup of 𝐺 . If for every prime  , with       𝐺  , a Sylow  -subgroup of 𝐺  is 

abelian, then we call  𝐺  𝐺  an  -pair.  

7.11 Remark [6]  

 If (𝐺 , 𝐺) is an  -pair, then 𝐺 is an  -group.  

7.12 Theorem [3]  

Let 𝐺 be a group with abelian Sylow  -subgroup. Then 

   𝐺    𝐺    
7.13 Theorem [7] 

Let 𝐺 be a finite group and       prime integers. If 𝐺 does not have any elements of order   , then 

one of the following holds: 

(i) The Sylow -subgroups or the Sylow  -subgroups of 𝐺 are abelian. 

(ii) 𝐺         𝐺      and                or         

 

7.14 Theorem [7] 

For a given prime  , all Sylow  -subgroups of 𝐺  are conjugate to each other. 

Proof. If a Sylow  -subgroup is unique, then it is equal to all its conjugations and thus normal. If there are 

multiple Sylow  -subgroups, they must be conjugate to each other, so none of them can be closed under 

conjugation, prohibiting normality. Since any subgroup of an abelian group is normal, a Sylow  -

subgroup must be unique.  

 

 

8. Factoring Finite Abelian Groups 

8.1 Definition [18] 

The sum of subsets   ,   ,...,   of a group 𝐺  is the subset of all elements of the form ∑   
 
   , where 

      for each  . If the direct sum of subsets equals 𝐺, we call this a factorization of the group 𝐺. 

The notation       is used to denote the set of all elements               . In a factorization, 

each subset   may be replaced by         for any elements     𝐺  

8.2 Definition [18] 

A subset   of a group 𝐺 is said to be periodic if there exists a non-zero element   of 𝐺 such that 

         . 

8.3 Remark [18] 
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The set   of these periods, together with    forms a subgroup of 𝐺. Clearly   is a union of cosets of  . 

Equivalently, there exists a subset   such that          , where   is non-periodic. 

If 𝐺    +  +...+  is a factorization in which             then we obtain  

a factorization of the quotient group 𝐺  . If, again, one factor is periodic, this process may be continued. 

8.4 Definition [18] 

A group has been called good if in every factorization involving two factors one factor must be periodic. 

8.5 Definition [18] 

The group is called  -good if this holds true for factorizations involving   factors. 

8.6 Definition [18] 

A factorization is said to be bad if none of the factors is periodic. 

8.7 Proposition [18] 

The cyclic group of order   is denoted by     . The subgroup generated by a subset   of a group 𝐺 is 

denoted by〈 〉. If   and   are non-periodic subsets and if the sum 〈 〉    is direct then it has been 

shown that       is non-periodic.  

8.8 Lemma [18] 

Let a group 𝐺 be a direct sum of subgroups     of relatively prime orders. Let 

𝐺        be a factorization of 𝐺 such that     divides    . Then 𝐺          is also a 

factorization.  

Proof. Let                    Since   and   are relatively prime, there exists   such that 

               Since    divides , it follows that     and    are relatively prime. It follows 

that          𝐺 is a factorization. Since  

       , it follows that          𝐺 is a factorization. We should note that this implies that 

the elements             are distinct. 

8.9 Theorem [18] 

Let 𝐺 be a cyclic group and let there be a factorization of 𝐺 in which each factor has either prime power 

order or order equal to the product of two primes. Then one of the factors is periodic. 

Proof. Let 𝐺 have order   and generator  . Let   be a character of 𝐺 such that       is an th 

primitive root of unity. It follows that if            where      is a prime power then    is periodic. 

So we may assume that 𝐺                       , where            if and only if 

      and that, for these values of  , |  | =      where       are distinct primes. Let    be the 

 𝐺     𝐺   -component of   . By the lemma we may replace    by    to obtain the factorization  

 𝐺                               . From above for some value of   we must have 

          . We may assume that            and, for convenience, that          .  
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Let          , where   is not divisible by   or by  . Let       of orders        , 

respectively, be a generating set for 𝐺. As already noted, since    is a subset of Z(    ),        

   implies that    is periodic. Since         , it has a period of order   or of order  . Without loss 

of generality, we may assume that       is a period of   . Let     〈     〉. Then there is a 

subset   of order   such that           . By the lemma, the elements of    and so also of   are 

distinct. Let     ⋃ (          )
 
     From the form of   we may assume that 

             Then from            it follows that  

    ⋃⋃  

 

   

   

   

                                  

where                           . 

Since       has order  , it follows that                               have orders 

       , respectively. Then            implies that  

∑ ∑    
                        

 
   

   
   . 

It follows that the polynomial obtained by replacing   by   is divisible by        . Thus, the 

coefficients of        
   
               

   
in this polynomial are equal. Hence  

∑                 

    

∑               

    

 

 As before, it follows that         divides, for each   and   , the polynomial   

∑             

    

∑              

    

 

So the coefficients in this polynomial of                               are all equal. Now the 

pairs           are distinct. Thus, for a given pair               , there is either a unique   with 

          equal to this pair or else no such   exists at all. So, the coefficient in the above polynomial of 

         is either of the form                 
      or else is   as no such   exists.  

Suppose for a given   that both situations arise. Then all coefficients are   for this value of   . Thus 

               
     for the   values of   for which such coefficients arise, where         . 

Since the occurrence of          does not involve  , this occurs for all pairs   and   . So, for this value of 

 ,    terms are involved. For any other value, say  , there must be fewer than    terms involved and so 

the same result arises. Hence                    for all      and  . Therefore    is periodic with 

period      .  

So we may assume that     exist such that all   values of                
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        do occur. This gives all    terms in    and since       it follows that   is the 

subgroup of order   . So in this case we have  

    ⋃⋃  

 

   

   

   

                           

Then, as above, we obtain that for all          , 

                
            

          
        

These are complex numbers of modulus   and from an Argand diagram it is easy to see that they must be 

equal in pairs. So three cases can arise as follows: 

(Case 1)                                                        

(Case 2)                                                        

(Case 3)                                                                 

The third case, in which                 
       , can only arise if   is even. We recall that 

                and all sums being taken modulo  . 

Firstly, let us assume that only cases Case 1 and Case 2 occur. If, for a given    

                 ) for all       then it follows that for all                   

                   Hence        is a period of   . So we may suppose that for each   there 

exists      such that                  Then Case 2 holds for this pair      and for all   . So 

                 By Case 2,                   for all     . Hence          

        (         )for all        . It follows that    is periodic with period     . Now we may 

suppose that      and      exist such that neither Case 1 nor Case 2 is satisfied. Then   must be even 

and  

                                         . 

Let                
          . Then as           we have that     

           

      
       Since neither Case 1 nor Case 2 is satisfied, it follows that 

              . Since   is even, it follows that    is odd and so that we may replace    by 

2  . If             then, as above using       as generators, we obtain that 

                  
             

           
       

For      and    , this implies that                 This gives       or 

       Which is false. We may now proceed by induction on  . If      , we would have the 

contradiction of a factorization 𝐺                     in which       is not zero for any 

factor  . Thus, in this case, Case 1 or Case 2 must hold always and from the above we have that    is 

periodic. For      , this new factorization has only       factors,   say, with          . The 

required result follows by induction on  . This completes the proof. 
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8.10 Theorem [18] 

Let   be a prime and let 𝐺 be a group such that the  -component 𝐺  is cyclic. If  

𝐺    +  +...+        is a factorization of 𝐺 such that each factor    has order equal to a power 

of  then one of the factors is periodic. 

Proof. For each   let    be the 𝐺  -component of   . By the lemma,    may be replaced by    and the 

elements of    are distinct. Let   be the subgroup of 𝐺 which is the complement of 𝐺  . Since the 

subsets    are contained in 𝐺   it follows that, for each        

 𝐺                               𝐺          

This leads to the factorization 

 𝐺                           𝐺               

Since  𝐺  is a cyclic group of prime power order it follows that one of the factors must be periodic. 

Suppose first that no factor    is periodic. Let 𝐺   have order    and generator  . Then       is a 

period of       𝐺                and so of  

    (𝐺      )for each      . Since, as   varies over     is the union of these sets it follows 

that       is a period of  .  

We may now suppose that one of the other subsets, say   , is periodic. Then       is a period. We 

should note that this implies that the subsets   ,...,   are not periodic since the sum with    being 

direct implies that       cannot also be a period of one of these sets. It follows that if   is a character 

such that       has order    then            for          . 

Now let us consider the factorization 𝐺          +...+        For any character   such that 

      has order    , we have that either         or that          . Let          , be the 

set of all such characters such that           . Let the kernel of   be   , i.e.          

 𝐺               Let the intersection of all these subgroups   be  . Let     〈     〉. We note 

that the statement that       has order    is equivalent to               and so to the statement 

that           . 

 Let us suppose that      . Let            . If       and            then        

and so only one such   can exist.            implies that  

∑            , where the summation is taken over all           . Then        divides 

∑        . Since       is a period of   , it follows that if  

       is in    with       then there exists       such that  

                   . 

From above it follows that                   and so that           . This is true for all 

such . Hence         is in  . It follows that       and so that       is a period of   . 

 Finally we have the case in which      . Let   be a character such that  
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                  .           implies that           . Thus          . It 

follows that there exist subsets     of 𝐺 such that   is the disjoint union of the direct sums  

     and     .  

Now the sum        is direct and       is a period of   . It  follows that   is the empty set and so 

that          . Thus every non-zero element of   is a period 

of  . This completes the proof. 

 

Conclusion 

This research project has mainly focused the structure of the finite abelian groups, basis theorem, Sylow„s 

theorem and factoring finite abelian groups. Further, it compares with groups in general the structure of 

finite abelian groups is much easier to investigate since commutatively implies many structural properties 

that almost never hold in non-abelian groups.  
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 الدراسة :  ملخص

ت من واحدة أو أكثر من الصمس المنتهيت )عملياث الصمسة المنتهيت( التي  ديّ، جخكىن الهيكليت الجبرً في الجبر الخجسٍ

ت شمسة )مجمىعاث  .الصمس الأبيليتًخم الخعسف عليها من خلال الخحقق من شسوط وبديهياث  حشمل الهياكل الجبرً

ت جخىافق مع عناصس الازجباط Gوظيفيت(، ودوائسَ، ومجالاثٍ، وشبكاثٍ مدمجت، إلخ ...(. الصمسة ). ، ( هي بنيت جبرً

 والعناصس الحيادًت، وكرلك عناصس النظير والمخمم.

يت، هي شمسة جحدث هديجت جطبيق عمليت الصمسة على الصمسة الأبيليت هي مجمىعت ًطلق عليها أًضا شمسة جبادل

ن أثناء جطبيق العمليت. هره هي  ن واللرًن لا ٌعخمدانِ على الترجيب الري جاءا به هرًن العنصسٍ مجمىعت من عنصسٍ

الصمس أو المجمىعاث الىظيفيت التي جخىافق مع الشسوط والبديهياث الخبادليت. مفهىم الصمسة الأبيليت هى من أوائل 

file:///C:/Users/AJSRP/Desktop/للتحكيم/www.mathematik.uni-kl.de/~malle/download/elemords.pdf
file:///C:/Users/AJSRP/Desktop/للتحكيم/www.ms.unimelb.edu.au/~cfm/notes/cgt-notes.pdf
file:///C:/Users/AJSRP/Desktop/للتحكيم/www.jmilne.org/math/CourseNotes/GT310.pdf
https://www.philadelphia.edu.jo/math/witno/notes/won7.pdf
http://onlinebooks.library.upenn.edu/
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اضيت كمفاهيم  س العدًد من المفاهيم السٍ ديّ، والتي من خلالها جم جطىٍ المفاهيم التي جم مصادفتها في الجبر الخجسٍ

 مفهىم الفضاء الحلقي والفضاء المخجهي. 
ً
اضيت، والحلقاث الخبادليت، وأًضا  الحلقاث السٍ

ا ت للصمس الأبيليت وكرلك النظسٍ ت سيلى. جسكص هره الدزاست على الهيكليت الجبرً ث الأساسيت إلى جاهب هظسٍ

ت حيث اجبع الباحث منهج المقازهت  اث الجبرً إضافت إلى ذلك، جدناول هره الدزاست الخصائص المخعلقت بهره النظسٍ

ت الصمس الأبيليت بشكل عام، أبسط من هظائسها الغير  والاسخكشاف لخحقيق هدف الدزاست. وأظهسث الدزاست بأن هظسٍ

 الأبيليت المنتهيت سهلت الاسديعاب.  أبيليت، وحعد الصمس 

 

 الصمس، الأبيليت، المنتهيت  الجبر، :المفتاحية كلماتال


