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Abstract: In abstract algebra, an algebraic structure is a set with one or more finitary operations defined on it that satisfies a
list of axioms. Algebraic structures include groups, rings, fields, and lattices, etc. A group is an algebraic structure (G, *),
which satisfies associative, identity and inverse laws. An Abelian group, also called a commutative group, is a group in which
the result of applying the group operation to two group elements does not depend on the order in which they are written.
That is, these are the groups that obey the axiom of commutatively. The concept of an Abelian group is one of the first
concepts encountered in abstract algebra, from which many other basic concepts, such as rings, commutative rings,
modules and vector spaces are developed. This study sheds the light on the structure of the finite abelian groups, basis
theorem, Sylow’s theorem and factoring finite abelian groups. In addition, it discusses some properties related to these
groups. The researcher followed the exploratory and comparative approaches to achieve the study objective. The study has
shown that the theory of Abelian groups is generally simpler than that of their non-abelian counter parts, and finite Abelian

groups are very well understood.
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1. Introduction

An algebraic structure is a set with one or more finitary operations defined on it that satisfies a list of
axioms. Examples of algebraic structures include groups, rings, fields, and lattices. Addition and
multiplication on numbers are the prototypical example of an operation that combines two elements of a
set to produce a third. These operations obey several algebraic laws o

An abelian group, also called a commutative group, is a group in which the result of applying the
group operation to two group elements does not depend on the order in which they are written. That is,
these are the groups that obey the axiom of commutatively. Abelian groups generalize the arithmetic of
addition of integers. The concept of an abelian group is one of the first concepts encountered in
undergraduate abstract algebra, from which many other basic concepts, such as modules and vector
spaces are developed. The theory of abelian groups is generally simpler than that of their non-abelian
counterparts, and finite abelian groups are very well understood el
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The study is important for researchers and students specialized in Algebra. It provides them with
set-theoretical backgrounds of abelian groups through exploring their fundamental types and main

properties.

To achieve the study objective, the researcher followed the exploratory and comparative approaches to
achieve the study objective.
1.1 Algebraic Structures: Basic Definitions and Results
1.1.1 Definition of set S
A setSis a collection of well-defined objects, and those objects are called the e/emen[s(or members) of S.
1.1.2 Definition of finite set \*
A finite set is a set whose elements are enumerable and it can be described by listing its elements
inside{ }.
We also say that they belong to that set (we denote this by €)
1.1.3 Definition of infinite set
An infinite setis a set whose elements are none numerable.
1.1.4 Definition of union "
The union of two sets M and Mis the set of all elements each of which belongs to at least one of
the two sets. The union of two sets is symbolizedby M U N.
1.1.5 Definition of intersection =
The intersection of two sets M and Ms the set of elements each of which belongs to both sets.
The intersection of two sets is symbolizedby M N N.
1.1.6 Definition of P .
A natural number P is prime if p = 2 and there is no factorization p = ab, wherea < P and
b < p are natural numbers.
1.1.7 Theorem (Mathematical Induction) vl
Let P (X) be a property (possibly with parameters). Assume that
(i) P(0) holds.
(ii) ForallneN, P(n) implies P(n + 1).
Then P holds for all-natural numbers 71 .
1.1.8 Theorem (Division Algorithm) r
Given integers  and b witha # 0,b # 0 there exist unique integers  and 7" with
b=qa+r ad 071 < |a.

1.1.9 Definition o
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If @ and b are integers, then @ is a divisor of D if there is an integer d withb = ad.we also say that
divides b orthat b is a multiple of @, and we denote this by 4 | b.

1.1.10 Definition "*"
Let @ and b be nonzero integers. A common divisor of @ and bis an integer that divides both @ and b.
We define gcd(a, b), or the greatest common divisor of @ and D, to be the largest positive common

divisor of @ and b. (Note that 1 is always a common divisor of any two integers).

1.1.11 Theorem (Euclid’s Lemma) r
If p is a prime and p|ab, then p|a or p|b. More generally, if a prime p divides a product @4 @y~ Ay,
then it must divide at least one of the factors .
1.1.12 Definition """
If X and Yare sets, then their Cartesian productX X Y is the set of all ordered pairs(X, ), where
x € Xandy € Y.

1.1.13 Example 0l
The planeis R X R.
1.1.14 Definition ">
Let X and Y'be (not necessarily distinct) sets. A funct/'onf from X to Y, denoted by
f:X-Y,
Is asubsetf C XxVsuchthat, foreacha € X, thereisa unique b € Y with (a, b) € f
Foreacha € X, the unique element b € Y forwhich (a, b) € fis called the value offat a,and b
is denoted by f (@).Thus, f* consists of all those pointsin X X Y of the form (@, f (@) )-When f: R
— R,thenf is the graph off(x).
Here we sayXis the domain of f and Y is the zarget (or codomain) off , and define the /image (or range)
off, denoted by im f, to be the subset of Y’ consisting of all the values of f
a well-defined function is therefore one whose formula produces exactly one value in its codomain for
every input from its domain.
1.1.15 Definition "
Afunctionf : X - Yis a surjection (oris onto) if

imf =Y.

Thus, f is surjective if, for each y € Y, there is some X € X withy = f (X).Surjections are
often called epimorphosis.
1.1.16 Definition "

A function f: X > Yisan injection (or is one-to-one)if, whenever @ and a’ are distinct elements of

X, then f (@) # f (a).

A Study On Finite Abelian Groups (26) Al-Johani



Journal of Natural Sciences, Life and Applied Sciences - Issue (3) 1 - October 2017

Equivalentlyf is injective if, for every pair @, a’ € X, we have

f ((1) = f (ar) impliesa = a”.
Injections are often called monomorphisms.
1.1.17 Definition "
Afunction f: X — Yis abjectionif itis both an injection and a surjection.
1.1.18 Definition
A groupis anon empty set (7 on which there is defined a binary operation
(a, b) — absatisfying the following properties:
Closure: If @ and b belong to &, then abisalsoin G;
Associativity. a(bc) = (ab)c foralla,b,c € G;
Identity. There is an element linGsuch thatal = 1a = aforallain G
Inverse: If Qisin Gthere is an element @ Yin Gsuchthataa™ = a~la = 1.
1.1.19 Definition "’
A set G together with a binary operation (a,b) — a.b:G X G — Giscalleda magma. When the
binary operation is associative, (G, . ) is called a semi group.
1.1.20 Definition "™
A finite groupis a group with a finite number of elements
1.1.21 Definition
Agroup Gisan abelian groupif the binary operation is commutative, i.e.,
ab = ba

foralla, binG.
11.22 Lemma "
Let (G,*) be agroup

(1) The cancellation law should : If either
x*a =xxbora*xx =b*x,
Thena = b.

(i)  The elementeis the unique element inG with

exx =x=Xxxe

Forallx € G.

(iii) Eachx € Ghasaunique inverse: There is only one element X € Gwith

X*Xr =€ = XTr * X

(Henceforth, this element will be denoted byx_l).

(iv) (x_l)_l = XForallx € G.
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1.1.23 Proposition r
The notation@MNis the natural way to denote @ * @ ***** @ (N-times).

However, if the operation is +, then it is more natural to denoted + a + -+ + a

(n-times) by na. Let Gbe a group written additively; if a, b € G and m and N are (not necessarily

positive) integers, then:
i) n(a + b) = na +nb
iym(na) = (mn)a
i) ma + na = (m +n)a
1.1.24 Proposition (Laws of Exponents) .

Let G bea group, leta, b € @G, andletmandn be integers.
(i) If @ and b commute, then (ab)n = anbn.
(i) (an)m = amn.
1.1.25 Definition "
Asubset H of a group Gis a sub group if
i 1€ H,
(iyIf x,y € H thenxy € H;
(i) Ifx € H,thenx™1 € H.
IfHis a subgroup of G, we write H < G;A subgroup H # G is called a proper subgroup, then we write
H <G.
1.1.26 Proposition .
Asubset H of a group G is a subgroup if and only if H is nonempty and, whenever
X,y € H,thenxy™1 € H.
1.1.27 Proposition .
The intersection [1;=1 H; of any family of subgroups of a group G is again a subgroup of G. In
particular, ifH and K are subgroups of G,thenH N Kisa subgroup of G.
1.1.28 Definition
The order of[hegroqu, denoted by |G |, is simply the number of elements in G
1.1.29 Definition
A finite group can in principle be specified by a Kayley table, a table whose rows and columns are indexed

by group elements, with the entry in row @ and column b beinga © b.
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1.1.30 Examples (6l

Here are two examples (Table 1)

°le ab c °leabc
ele abc ele abc
ala b c e ala e c b
blbcea blbc e a
clc eab clc b ae
Table 1(a) Table 1(b)

Table 1 Kayley table

1.1.31 Definition "

If Gisagroupanda € G,write< a >= {an: n € Z} = {all powers ofa};

< a > is called the cyclic subgroup of G generated bya. A group G s called cyclic if there exists
a € GwithG =< a >, inwhich case @ is called a generator of G.

1.1.32 Lemma ”
Afinite cyclic group generated by @ is necessarily abelian, and can be written as

{1, a, az, e, a"‘l} where @™ = 1, or in additive notation, {0, a, ?a,..., (Tl — 1)61},
withna = 0.

1.1.33 Proposition .
Let G be a finite group and let @ € G.Then the order of @ is | < @ > |, the number of Elements
in< a >.

1.1.34 Definition "
The order of an element @ of a group G is the smallest positive integer M such that a™ = 1,ifone
exists; if no such 1M exists, we say that 4 has infinite order.

1.1.35 Theorem "
Ifa € @ isanelementofordern,thena™ = 1lifand onlyifn | m.
1.1.36 Lemma "

A cyclic group of order 1 has a unique subgroup of order d, for each divisor d of 1, and this subgroup is
cyclic.

1.1.37 Theorem (Lagrange’s Theorem) (el
The order of a subgroup of a group G divides the order of G.
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1.1.38 Proposition .

If G is a finite group, then every X € G has finite order.

1.1.39 Definition "

If P is a prime, then a finite group G is called a p-groupif| G| = p™ forsomen = 0.
1.1.40 Theorem (Higman, Neumann and Neumann) ral

Any countable group can be embedded in a group with two generators.

2. Normal Subgroups
2.1 Definition
Let H be asubgroup of the group G.If g € G, the right coserof H generated by g is
Hg = thg: h € H};
similarly, the Jefr coserof H generated by g is
gH = {gh: h € H}.
It follows from the definitions thatif a, b € G, then
Ha = Hbifandonlyifab_1 € H,and

aH = bHifand only ifa~lb € H.
Thus, if we define @ and b to be equivalent if ab™1l e H, we have an equivalence relation, and the

equivalence class of  is
{b: ab~' € H} = Ha.

2.2Lemma "
Let H be a subgroup of a group G,andleta,b € G.

(i)aH = b H if and only if b™la € H.in particular, ¢ H = H if and only if

a € H.

(i) faH N bH # @,thenaH = bH.

(iii) |aH| = |H|foralla € G
2.3 Definition
A subgroup N of the group Gisa normal subgroup if
g_lNg = Nforall g € G.
We indicate that [V is a normal subgroup of G with the notation NS G.
2.4 Proposition -

fH < Gand K < G, then HK < G if and only if HK = KH. In this case, HK is the

subgroup generated by H UK.

2.5 Definition )
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The group of cosets of a normal subgroup N of the group G is called the guotient group or the factor
group of Gby N. This group is denoted by G /N which is read “G modulo N” or“G mod N".
2.6 Proposition -
Let N be a subgroup of G.If any of the following equivalent conditions holds, we say that N is normal
subgroup of G, orthat N is normal in G:

G gNg™'1 € Nforallg € G (equivalently,g_lNg C Nforallg € G)

(ii) gNg_1 = Nforallg € G (equivalently,g_lNg C Nforallg € G)

Gi)gN = Ngforallg € G

(iv) Every left coset of NinGisalsoa right coset

(v) Everyright coset of NVin G is also a left coset
2.7 Definition "

The centre of groupG is

{x € G:xa=ax foralla € G}
Itis denoted by Z (G).

2.8 Corollary nel
The centre of group G isanormal subgroup of G.
2.9 Definition "
The index of a subgroup Hin G, denoted by [G : H ], is the number of left cosets of H
inG.

2.10 Lemma

Let H be a subgroup of G of index 2. Then a’EHforalla EG.

3. Homomorphism
3.1 Definition
Iff:G = HwhereGand H are groups, then fiis said to be
a homomorphismif for all a, b in G, we have

f(ab) = f(a)f (D).
This idea will look familiar if Gand H are abelian, in which case we write, using additive
notation,f (a + b) = f(a) + f(b);
thus, a linear transformation on a vector space is, in particular, a homomorphism on the underlying
abelian group.
[12]

3.2lemma

Set of all homomorphism from GtoH is denoted by HOTTl(G, H) or Homy (G, H)
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3.3 Proposition 2l

A homomorphism f is injective if and only if its kernel K is trivial, that is, consists only of the identity.
3.4Lemma”
Some Standard Terminology

Monomorphisms = injective homomorphism
Epimorphism = surjective homomorphism
Isomorphism = bijective homomorphism
Endomorphism = homomorphism of a group to itself
Automorphism = isomorphism of a group to itself
3.5 Definition
Two groups G and H are called isomorphic, denoted by G = H, if there exists an isomorphism f :
G — H between them.

3.6 Definition
A property of a group G that is shared by any other group isomorphic to it s called an invariantof G .

3.7 Example .

The order |G| is an invariant of G, for isomorphic groups have the same orders. Being abelian is an
invariant [iff is an isomorphism and @ and b commute, then

ab = ba and

f@f®) = f(ab) = f(ba) = f(b) f (a)

hence, f (@) and f (b) commute.

3.8 Definition
If f: G — H isahomomorphism, define

kemelf ={x € G: f(x) = 1}

and imagef = { h € H: h = f (X) forsomex € G).

We usually abbreviate kernel f to ker f and image ftoIm f.

3.9 Example .

(i) If L2 is the multiplicative group 2 = {£ 1}, then sgn: S,;, = W2 is a homomorphism. The
kernel of sgn is the alternating group An, the set of all even permutations.

(ii) Determinant is a surjective homomorphism det: GL(Tl, R) — R, the multiplicative group of

nonzero real numbers, whose kernel is the special linear group SL(Tl, R) of all M X M matrices of

determinant 1.
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3.10 Theorem '™
If V-and W' are vector spaces over F of dimensions M and 1 respectively, then Hom(V, W) is of
dimension MM over F.

. 3
3.11 Corollaries ™

If f G — H is ahomomorphism, the following hold:
(i) Ifeistheidentity of G, then f () is the identity of H;
(ii) ForallXin G andforallnin Z, f (x™) = {f (x)}".
in particular, f(x™1) = {f(x)}™ L
(iii) If K is a subgroup of G, then f (K) is a subgroup of H;
@) If L is a subgroup of H, then f_l(L) is a subgroup of G;
v) If X € G is of finite order, then | f ()| divides | x| ;
oD f({x)) = (xf (X))
(vii) If G is abelian, so is f ().

3.12 Theorem 03l

Let K be a normal subgroup of the group G and denote the set right (or left) cosets by G/K on G/K
define an operation " by

Kg.Kh = Kgh
Then "."is a well-defined operation and (G /K,.) is a group called the factor group G mod K.

Furthermore, the map
V.G — G/K
defined by V(g) = Kg
is an epimorphism, called the natural homomorphismfrom G onto G /K, whose kernel is K .
3.13 Theorem (Factor Theorem) =
Any homomorphism f whose kernel K contains N can be factored through G/N‘ In other words, there
is a unique homomorphismf : G/N — H such that](T o = f Furthermore,
(i) fis an epimorphism if and only iff is an epimorphism;
(ii) fis amonomorphismifandonlyif K = N;
(iii) ]?is an isomorphism if and only iff is an epimorphismand K = N.

3.14 Theorem (First Isomorphism Theorem) 2

Iff : G - Hisa homomorphism with kernel K, then the image off is isomorphic to G/K.

3.15 Theorem (Second Isomorphism Theorem) =
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If H and N are subgroups of G, with N normalin G, then
H/(H nN)= HN/N.
3.16 Theorem (Third Isomorphism Theorem) 2l

If N and H are normal subgroups of G, with N contained in H, then
G/H = (G/N)/(H/N),

" . ”
a “cancellation law”.

4. Direct Products
4.1 Definition
Let G be a group with identity €, and let K and N be normal subgroups of G such that K[I\N =

{8}. The internal direct product of K and N is the subgroup

KXN = {kntk€eK,neN} of G
4.2 Definition
letG and H be groups with operations O and *p respectively. The external direct productG @ H of

G and H is the Cartesian product G X H, together with an operation that is,

(91, 1) (g2, hz) = (g1 96 G2, 1 *u h2)
Where g1, §2€ G and hy,h, € Hand (g1, h1), (g2, h,) € G @ H.

4.3 Proposition 4l
The following properties hold, which concern the direct product of groups.

(1) The commutative property:A XB =~ BXA.

(i) The associative property: A X (B X C) =~ (A X B) X C. This allows us to simply write

multiple products without brackets, e.g, A X B X C.

(iii) The substitution property:
fA ~ A'andB =~ B',thenAX B =~ A" X B'".

(iv) The cancellation property:

fA =~ AlandAX B =~ A’ X B’,thenB ~ B’
4.4 Theorem ™
Let G and H be groups. Then G @ Hisalso agroup.
4.5 Theorem ™

Let G and H be groups with identities € and €y, respectively. Then

GD{ey} = {(9,en): g € G}
And

{ey} D H = {(eg,h):h € H}
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are both subgroups of G D H.
4.6 Proposition -
If G is the internal direct product of H and K, then G is isomorphic to the external direct product
H XK.
4.7 Proposition v
A group G is a direct product of subgroups Hy, H; if and only if
@ G = H{H,,
Gi) Hy N H, = {e} and
(iii) every element of Hy commutes with every element of H.,.
4.8 Proposition 7
A group G is a direct product of subgroupsHy, H if and only if
() G=H;H,,
(i) H; N Hy={e}, and
(iii) H1 and H are both normalin G.

5. Abelian Group

5.1 Definition "

If Sand T are subgroups of an abelian group G, then G is the direct sum, denoted by

G=SPT,

fS + T = G (ie, foreacha € G,thereare S € Sandt € T witha = S + t)and
SNnT = {0}

5.2 Theorem "

Let G be a group with two normal subgroups H and K, with the conditions that

H NK = {e} and HK = G.

Then G =~ H XK.

Where HK = {hkh € Handk € K}

The hypothesis of this theorem is sometimes used as the definition of G being the internal direct product
of H and K. In other words, the theorem states that internal implies external. Conversely, given G =
H X K, we have two normal subgroups, i.e, H X {e} ~ H and {e} X K = K, whose
internal direct product recovers (. Hence, the two notions of external and internal direct products are
actually equivalent.

Proof. We first show that every element of H commutes with any other of K. Leth € H and k €

K. We note that
hkh™ k™1 = (hkh ™Yk 1€ K
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Because K is normal, and similarly
hkh™'k™! = h(kh~'k™') € H
However, H N K = {e},soweseethat

hkh= k=1 = ¢,
ie., hk = kh.
This resultopensthewayforahomomorphism9: H X K — HK defined by

o (hk) = hk.
As we can check,

0((h k)W, k"))
= 0(hh', kk")
= hh'kk'
= hkh'k’
= 0(h, k)O(h, k"

Since HK = @G, we are only left with showing that 0 is one-to-one and onto. Well, onto is obvious by

the very definition of HK. For one-to-one, let
O(h,k) = 6(h, k),
so that hk = h'k'.
then hlh = k()L
the left side belongs to H and the right to K.
this is possible only if both be the identity element. Thus
h = h'andk = K/,
Completing the proof.
5.2 Proposition
The following statements are equivalent for an abelian group G and subgroups S and Tof G.
OhG =S P T.
(i) Every g € G has a unique expression of the form
g =s +t
Wheres € Sandt € T.
(iii) There are homomorphisms p : G — Sand: G — T, called projections,andi : S — G
and j : T — G, called injections, such that
pit = 1;, qj =17, pj =0, qi = 0, andip + jq = 1;.
5.3 Remark "
The equations pi = lgand qj = 17 imply that the maps I and J must be injections and the maps

P and g must be surjections.
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Proof. (i) = (i) By hypothesis, G = S + T, sothat each g € G has an expression of the form
g = S + twithsSE S and t ET. To see that this expression is unique, suppose also that
g = s’ 4+ t' wheres’ € Sand
t'ET Then s +t =5+t gves s —s' =t —t € SNT = {0}. Therefore,
s = s'andt = t', as desired.
(i)=(ii)If g € G, then thereare uniqueS € Sandt € T withg = S + L. The functions pand
q. given by
p(g) = s and q(g9) =t
are well-defined because of the uniqueness hypothesis. It is routine to check that P and q are
homomorphisms and that all the equations in the statement hold.
(i)=@)Ifg € G, theequationl; = ip + jq gives
g=1ip(g)+ jq(g) € S+T,
becauseS = imiandT = im J.
Ifg € S,theng = igandpg = pig = g;itg E T.,theng = jgandpg = pjg =
0. Therefore, ifg € SN T,theng = (0. Hence,
SNT ={0}, S+T = GandG=SDT.
5.4 Corollary .
LetSandTbesubgroupsofan abelian group GifG = S @ T,then
ST = §xT.
Conversely, given abelian groupsSand T, define subgroups S'=SandT = T of
S X T by
S ={(s00: s€S} and T = {0,t):t €T}
thenS X T =S P T
Proof. Definef : S P T > S XTastollows. IfE S @ T, then the proposition says that
there is a unique expression of the foom @ = S + ¢, and so f tawe (S, t) is a well-defined
function. Itis routine to check that f is an isomorphism.
Conversely, if = (S, t) € S X T,then
g = (0 +(0,t) S + T

And S'n T ={(0,0)}
Hence, S XT = S’@ T'.
5.5 Definition |

If S1, S5, ..., Spare subgroups of an abelian group G, define the finite direct sumS; @ S, DD

Sy, usinginductiononn. = 2:
51D S D@D Sns1 =[S1D S B Sp] @ Sns1-
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We will also denote the direct sum by

XS = 5, DS, DD Sy

.. 1
5.6 Proposition il

If Gl, GZ, e, Gn are abelian groups and Hi c Gi are subgroups, then

(G1 D DG)/(H D @ Hy) = (G1/Hy) X+ X (Gn/Hy).
Proof. Definef : Gl @ @ Gn - (Gl/H1) @ @ (Gn/Hn) by
(G- Gn) — (91 + Hi,ooo g0 + Hy).

Since f is a surjective homomorphism with

ker f = H & - D H,,

the firstisomorphism theorem gives the result.

If G is an abelian group and M is an integer, let us write
mG = {ma: a € G}.

Itis easy to see that M is a subgroup of G.

5.7 Definition
Let F = (Xl, . ..,Xn) be an abelian group. If ' = (X1> DD (xn),

Where each (X;) = Z,then F is called a (finitely generated) free abelian group with basisX, . .., Xy,

More generally, any group isomorphic to Fis called a free abelian group.

5.8 Theorem
Le F be free abelian with basis X = {xi 1l E I}, G an arbitrary abelian group and f : X -
G any function. Then there is a unique homomorphism 8 : F — (G such that

0(x;) = f(x;), foralli € I
Proof. IfZ; = (x;), define f; : Z ; = G by fi(mx;) = mf(x;). Itis easy to see that f; is a
homomorphism. To define Bletx € F. Then there are uniquely determined integer coefficients such

that X = )¢ CiX;. We define 6 by

0(x) = Yierfi(cixi) = Xier€i f (1)

Because each f; is a homomorphism it follows that 8 is a homomorphism. If
Y : F — Gis another homomorphism such that Y(x;) = f(x;), for all i € I, then

Y(x) =2XiP(cx) =2Xicp(x) =Xicif (x) = 0(x).

5.9 Theorem "’

Every abelian group Gisa quotient of a free abelian group.

5.10 Proposition .

If Z™ denotes the direct sum of M copies ofZ, then Z™ = Z™ ifand onlyifm = n.

Proof. First, for any abelian group G, thatif
G =G, P - P G, then2G = 2G4 P ---Pp ZGn. It follows that
G/2G = (G1/2G1) @ - D (Gn/2Gy),
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so that |G/2G| = 2™

Similarly, if H =27™

then |H/2H | = 2™
Finally, if G =7Z"=7™ =H,

Then G/2G = H/2H and 2" =2™

We concludethatn = m.

Proof. If X1, ..., Xpis a basis of F, then F = Z™, and if ¥4, ..., Y4y is another basis ofF, then
F = 7™ Therefore, m = n.

5.11 Definition

If Fis a free abelian group with basis Xq,...,Xy, then MNis called the rank of F, and we
writerank(F) = n.

5.12 Definition

An abelian group G has generators X = {Xl, b I Xn} and relations

Zaijxn = O,l = 1,2,...,771
j=1
in case G = F/R, where F is a free abelian on X and R is the subgroup generated by

{Z?=1aijxn: [ = 1,2,...,m}

5.13 Proposition 6l

Let H be a normal subgroup of G. Then G /H is abelian if and only if [X, V] € Hforallx,y € G.
Proof. First assume that G/H is abelian and take any X, Y in G. Then the product of the factor groups'’
XH and YH can be written as

(xy)H = (xH)(yH) = (yH)(xH) = (yx)H.
The factor group containing [X, y] can be written as
(xyx~ty™HH = (ey)(yx)"HH
= (xy)H(yx)™*H
= (yx)H(yx)™'H
= () (yx)"HH
= H.
Therefore, we conclude that xyx "1y~ 1 = [x, y] mustbein H.
Assume that [x,y] € H for any X,y € G. Since H is normal, then G/H is defined

and [y‘l,x‘l]H = H . Recallthisis the identity element, so

(xy)H = (xy)H [y~ ', x"']H
= ((xy) [y Lx'DH
= (yx)H.
= (k) ' H(x)H
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Hence,

(xH)(yH) = (xy)H

= (y0)H
= (yH)(xH).
Therefore, G/H is abelian.
5.14 Proposition el
Let G be a group.
(i) The derived subgroup G'isnormalinG.
(i) The derived subgroup G' is the smallest normal subgroup of G such that G/G’ is abelian, or more
precisely, if H is a normal subgroup of G, then G/H is abelian if and only if G C H.
Proof. For (i), it will suffice to show that any element x = [X, y] € G’ and g € G exhibits
g 1x'g G'. since we have x' = [x,y] = xyx~1y~1 then we will insert ¢ = g~ 1g
between each element ofxyx_ly_lto obtain
-1,,—-1 _ -1 -1 -1 -1 -1
xyx—y~ = x(gg9~)y(gg " )x (99 )y
From the productg_1 [x, V] g we obtain
-1 — -1 -1 -1,—-1 -1,,—-1
g xylg =g (1xgg Y99 x99 "y )q )
= (g 1xg)(g 1yg)(g X g%(g Y g3
= (97°x9)(9""vg)(g "x9)" (g ¥9)
= [97°xg,97 ¥yl

Therefore,g_lxlg € G
For (i), first note that if G c H, then any element [.’X,', y] € G'isalsoin H. From here, we can
directly apply Proposition 3.1.16to justify the claim that G /H is abelian if and only if G' € H
5.15 Theorem
fG/Z(G)is cyclic, then G is abelian.
Proof. Letting Z(G) = Z,wehave G = Upez @™ Z since G/Zis cyclic. If b and C are elements
of G there exist Z; and Z, in Z and P and q in Z such that b = aP z; and <= a9z, Therefore
bc = aPz,a%z, = a?%92,z, = aPa¥z,z,=a%z,aPz; = cb

since Zq and Z; are in the centre of Gr.

6. Basis Theorem
It will be convenient to analyze abelian groups “one prime at a time.” Recall that a p-groupis a finite group
G of order pk forsome k = 0.When working wholly in the context of abelian groups, P-groups are

called

P-primary groups.
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6.1 Definition "
If P is a prime, then an abelian group G is p-primary if, for each @ € G, thereisn = 1 with
p"a = 0.
If G is any abelian group, then its p-primary componentis
Gp = {a € G: p"a = Oforsomen = 1}.
6.2 Theorem (Primary Decomposition) o
(i) Every finite abelian group G is a direct sum of its P-primary components:

G = Gy O Gy,
(i) Two finite abelian groups G and G' are isomorphic if and only if Gp = G’pfor every prime P.
Proof. (i) Let X € G be nonzero, and let its order be d. There are distinct primes P, ..., Py and
positive exponents €1, ..., €, with
d = plel pnen.
Definer; = d/ p;®, sothat pieiri = d.ltfollowsthat;x € Gpi foreach I (because dx = 0).
But the gcd d of T1, ..., Ty is 1 (the only possible prime divisors of d are P1s+++»DPn;butnoPjisa

common divisor because P; 1 7;); hence, there are integers Sy, ..., S, with 1 = Y.; §;7;. Therefore,

X = z_sirix € Gy, + +Gp .

i
wiie H; = G, + G, + -+ + épi +:++ +Gy, . Itsuffices to prove that if

X € Gm N H;,
then X = 0. Since X € Gpl., we have pfix = 0 for some £ = 0; Since x € Hj, we have
X = Zj:ti)’jr where p}giyj = 0; hence, ux = 0, whereu = Hj;tip)-gi. Butpf and U are
relatively prime, so there existintegers S and t with 1 = Spf + tu.
Therefore,

x = (sp! +tw)x = spfx +tux =0
(ii) Iff : G > G is a homomorphism, thenf (Gp) - G'p for every prime P, for ifpfa = 0,
then
0 = f(p'a) =p’f(a).

If f is an is omorphism then f1: G' > Gisalsoan isomorphism [so that f~1( G’p) C Gy for
all p]. It follows that each restrictionf|Gp : Gp - G’p is an isomorphism, with inverse f_llG’p.
Conversely, if there are is omorphisms fp : Gp - G’p for all p, then there is an isomorphism
¢: Zp Gp _)Zp G’pgiven b)’Zp ap — pr(ap).
6.3 Definition "
Let P be a prime and let G be a p-primary abelian group. A subgroup S S G is a pure subgroup if, for
alln = 0,
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Sn p"G = p"Ss.
6.4Lemma "
If p is a prime and G is a finite P-primary abelian group, then G has a nonzero pure cyclic subgroup.

6.5 Theorem (Cauchy) 241

Let P be a prime number. If any abelian group G has order,a multiple of P, then G must contain an
element of order P.

Proof. Let |G| = kp forsomek = 1.1In fact, the claim is true if kK = 1 because any group of
prime order is a cyclic group, and in this case any non-identity element will have order P. We proceed by
induction. Take any non-identity element X € G, say of order M. We are done if Pdivides M, for then
X™/Pwill have order P. Otherwise, consider the factor group G = G /{(x), of order |G’| =
kp/m. Since m is not a multiple of P, we may write |G’| = jp forsome j < k.We apply the
induction hypothesis to conclude that G’ contains an element of order P. According to the preceding
exercise, then G contains an element of order a multiple of P, and that suffices.

6.6 Theorem '
lfa € G isanelementofordern,thena™ = 1ifand onlyifn | m

Proof. Assume that @""* = 1. The division algorithm provides integers ¢ and 7 withm = nq +

T,where 0 <7 < n.itfollows that
am =1 =a™"™M=qM"qg ™™ = 1.
Ifr > 0, then we contradict 71 being the smallest positive integer with a™ = 1.Hence,r = 0Oand
Nn | m. Conversely, if m = nk, then
am = ank — (an)k — 1k =1
6.7 Theorem (Basis Theorem) r
Every finite abelian group G is a direct sum of cyclic groups of prime power orders.
Proof. By the primary decomposition, Theorem 3.2.2, we may assume that G is
p-primary for some prime P. We prove that G is a direct sum of cyclic groups by induction on
d(G) > 1. The base step is easy, G must be cyclic in this case. To prove the inductive step, we begin

to find a nonzero pure cyclic subgroup S € G.Wehave
d(G/S) = d(G) —d(S) = d(G) -1 < d(G)
By induction, G/S is a direct sum of cyclic groups, say:

G/S = zq:(fi),
i=1

LetX € G andletX have orderpf,wheref = x + S.We claim that there is
Z € Gwithz+S = X = x + Ssuchthat

wherex; = x; +S.

A Study On Finite Abelian Groups (42) Al-Johani



Journal of Natural Sciences, Life and Applied Sciences - Issue (3) 1 - October 2017

order Z = order (X).
Now X has order p™, where n > £.. Bup®(x +S) = p’X = 0inG /S, so there is some
s € S with px = s.By purity, there is S’ € S with p*x=p*s’. If we define z = x — ',
thenp?Z=0andz + S = x + § = X.ifZhasorderp™, then
m > £ becauseZ +—> X;sincep’z = 0, the order of Z equals p°.
Foreachi,choose Z; € G withz; + S =—x; = x; + S andwithorder
Z; = order X;; define T by
T = (Zl,...,Zq).
Now S +T = G, because G is generated by S and the Z;'s. To see that G = S @ T, it now
suffices to prove that SNT = {0} ify € SNT, then y = Y;M;Z;, where m; € Z.
Nowy € S, andso),;m;X; = QinG/S. Since this is a direct sum, each m;X; = 0; after all, for
each i,
g = ) M € (B 0 () + o @)+ e+ (5)) = {0)
JES!
Therefore, m;Z; = Oforalli,andhencey = 0.Finally, G = S @ T implies
d(G) = d(S)+d(T) = 1+d(T),
sothatd(T) < d(G).Byinduction, T is
a direct sum of cyclic groups, and this completes the proof.
6.8 Theorem (Fundamental Theorem for Finite Abelian Group) ”

Any finite abelian group is isomorphic to a direct sum of cyclic groups of prime power orders.

ki k k
Proof. Let |G| = p11p22 . 'where each of the p; are distinct primes. We get G = G (p1) X-

++ X G(pl) Then each of the G(pl) can be decomposed further such that G(pl) = C;lil X

;llz XX C;liti where Cy is a cyclic group of order X. Therefore, we have that G is omrophic to a
direct product of cyclic groups of prime power order.
6.9 Example el
Suppose G is a finite abelian group of order 360 = 23 -32 -5.ThenGis isomorphic to one of the
following:
Cg X Cg X C5 = C349
Cg X C3 X C3 X Ce
Cy X Cy X Cg X Cs
Cy X Cy X C3 X C3 X (s
Cy X Cy X Cy X Co X Ce
Cy X Cy X Cy X C3 XC3 XC(Cs

6.10 Theorem

Every finite Abelian group is the direct sum of cyclic P-groups.
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Proof. Let A be a finite abelian group. We write

A=P@®P, D+ +P,

Where P; is the Sylow-p; subgroupof A, i = 1,2,..., k. Replace each P; with a direct sum of cyclic
groups.

6.11 Theorem (Existence of Subgroups of Abelian Groups) i

If G is a finite abelian group and d is a divisor of | G |, then G contains a subgroup of order d.

Proof. We prove the result by induction on 1 = |G| for a prime divisor P of |G|. The base step
n = 1 is true, for there are no prime divisors of 1. For the inductive step, choose A € G of order
k > lip|ksayk = pf soa’

has order p. If } k, consider the cyclic subgroupH = (a)

Now H < G, because G is abelian, and so the quotient group G /H exists. Note that |G /H | =
n/k is divisible byp, and so the inductive hypothesis gives an element bBH € G /H of order p. If b
has order 11, then P | M. We have returned to the first case.

Let d be any divisor of |G |, and let P be a prime divisor of d. We have just seen that there is a subgroup
S < G of orderp. Now S < G, because G is abelian, and G /S is a group of order 1/ p. By

induction on |G|, G/S has a subgroup H* of order d/ p. The correspondence theorem gives
H* = H /S for some subgroup H of G containing S, and| H | = | H*||S| = d.

6.12 Example 71
1) Let G be an Abelian group of order 72 = 23 .32 and suppose we want to create a subgroup of
order 12. By the Fundamental Theorem of Finite Abelian Groups, we know Gis isomorphic to one of the

following:

Zg @ Zg
Zs D Zs D Zs
Zy D Z, D Zg
ZyDZ D Z3D Z3
Z,DZ, D Z, D Zy
Z,DZ, DZ, D Zs D Z;

we already know that Zg @ Zg = Z, has a subgroup of order 12. Suppose that we want to
produce a subgroup of order 12in Z, @ Z, @ Zgy. We can do this by piecing together all of Z, and
the subgroup of order 3in Zg. In other words, we get {(a, 0, b) | a € Z,, b € {0,3,6}}.

2)Let G be an Abelian group of order 45 = 5 - 32 weknow G is isomorphic to one of the following:

Zs @ Zy
Z15 D Z3
Zs D Z; D Zs
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Now we knowthat Z5 @ Zg = Z45 hasasubgroup of order 15.
6.13 Remark !
Let P be a prime. We set Gp: = {x € G| xisap-element}.
6.14 Theorem '
Let G be an Abelian group. Then Gp is a characteristic P-subgroup of order|G |p'
Proof. For X,y € Gp also Xy is a pP-element; use Xy = YX. Thus,Gp is a subgroup. Since
automorphisms map P-elements to P-elements, this subgroup is characteristic.
Then G contains a subgroup P of order |G |p' Hence, P is a P-group, and thus every element of P is a p-
element; in particularP < Gp. fP # G,,then

k= |Gp : Pl #1
and(k,p) = 1 (Lagrange's theorem). But now theorem 3.2.12gives a subgroup K of order k in Gp
since every element of K is a p-element.
6.15 Theorem '
Let G be an Abelian group. Then G =X e
Proof. The product G of the subgroups Gp, p € m(G),isadirect product; and theorem 3.2.15yields
Gyl =1 |Gp| = [ |G|p - |G|p'en<G> PER(G)
soG; = G.
In an Abelian group, the product of two cyclic groups of coprime order is again cyclic. Hence, the question
whether an Abelian group is cyclic or not can already be decided in the subgroups Gp, p € T[(G)
6.16 Definition
An Abelian D-group is elementary Abelianif x? = 1forallx € G.
6.17 Theorem '
Q. is an automorphism of the Abelian group G, ifand only if (k, |G|) = 1.
Proof. If (k,|G|) = 1, then Ker &, = 1. Conversely, if (k,|G|) = 1, then there exists a
common prime divisor P of k and |G |. Thep-subgroup Gp is nontrivial, and there exists a subgroup of
order P in G. This subgroup is contained in Ker . This gives for cyclic groups.
6.18 Lemma "

Let G be a finite Abelian group of order pnm, where P is a prime that does not divide 7. Then
G = H X K, where

H={x€G|x"" =€} adKk = {x € G|x™ = e}.

Also,| H | = p™

6.19 Lemma o
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Let (G be an Abelian group of prime-power order and let @ be an element of maximal order in G.ThenG
can be written inthe form< a@ > X K.

6.20 Proposition tel

Let G be a group with identity element € and suppose a? = eforalla € G.Then G is an abelian
group.

Proof. Suppose that foreverya € G, a? = e.let a;,a, € G.Then

(102)* = (@1a7)(a1a;) = e,
by our hypothesis. Multiplying both sides of the equation € = (a,a,)(a;a,) by a,a,

gives (azai)e = (aza;)(aiaz)(a;ay).
So aa; = a;(a1a1)a,a,a,
= a2(2a1)2a2a1a2
= (az)“(a,a;)
= aq4;

Hence, G is indeed abelian.
6.21 Corollary ral
Any group of order |G| = pz with P prime is abelian.
6.22 Definition
If G is an abelian group, then its exponentis the smallest positive integer M for whichmG = {0}.

6.23 Corollary .

If G is a finite abelian groupand G = S(c1) @D S(cy) DD S(cr), S (¢;) is a cyclic group
of order Cjand €1 | €5 | *** | €4, then €y is the exponent of G.

Proof. Since C; | C; forall i, we havec; S(¢;) = Oforalli,andsoc;G = {0}. On the other hand,
there is no number € with 1 < e < ¢; with eS(c;) = {0}, and so C; is the smallest positive

integer annihilating G.

7. The Sylow Theorem

This section discusses the Sylow's theorem and its related results for finite case only.
7.1 Definition
A finite group Gisa p-group if |G| = px, for some prime P and positive integer X. A maximal P-
subgroup of a finite group G is called a Sylow-p subgroupof G.

7.2 Lemma "’
If P is a Sylow-P subgroup of G and H is a p-subgroup of G suchthat P & H,then H = P.
7.3 Definition
Let H be a subgroup of a group G. A subgroup S of G is conjugateto H if and only if § = g_ng

forsomeg € G.
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7.4 Definition 7l

Let H be a subgroup of G.The normalizerof H in G is
Ng(H) = {g € G: g"'Hg = H}

7.5 Lemma o

Let P be a Sylow P-subgroup of a finite group G.

(i) Every conjugate of Pisalsoa Sylow P-subgroup of G.

(i) |Ng (P)/Plis prime to p.

(i) Ifa € G has order some power of P and if aPa™! = P,thena € P.
7.6 Corollary .
A finite group G hasa unique Sylow P-subgroup P, for some prime P, if and only ifP < (.

Proof. Assume that P, a Sylow P-subgroup of G, is unique. Foreach@ € G, the conjugate aPa=lis
also a Sylow P-subgroup; by uniqueness, aPa! = Pforalla € G,andsoP < G.

Conversely, assume that P <9 G IfQ is any Sylow P-subgroup, then = aPa forsomea € G;

1

butaPa™" = P,bynormality,andsoQ = P.

7.7 Theorem (Sylow)""
If G is a finite group of order P, where P is a prime and P + M, then G has a subgroup of order p€.
Proof. We first show thatp § [G : P].Now

[G: P] = [G: Ng(P)][N;(P): P].
The first factor, [G : Ng(P)] = 1, is the number of conjugates of P in G, and so P does not divide
[G : N;(P)]becauser = 1 modp.
The second factor, [Ng(P) : P] = |Ng(P)/P|, is also not divisible by p, by Lemma 3.3.5.
Therefore, P does not divide [G : P], by Euclid's lemma.
Now |P| = p* forsomek < e, andso
[G: P] =|G|/IP| =p°m/p* = p**m.
Since P does not divide [G ¢ P],we musthave k = e;thatis, |P| = p®
7.8 Proposition |
Let G be a group of order pq where P >  are primes with ¢  p — 1. Then G is cyclic. More
precisely, let P be a p-Sylow group (or Sylow P-group) and @ a g-Sylow group of G. Pick x€P\
{e}andyeQ\{e}.Then xygenerates G.

In this section we study the structure ofA-groups, finite groups all of whose Sylow subgroups are abelian.

7.9 Definition

An A -groupis a finite group, all of whose Sylow subgroups are abelian.
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7.10 Definition

Let G be a normal subgroup of Go. If for every prime P, with P | | G |, a Sylow p-subgroup of Go is
abelian, then we call (G-, G) an A-pair.

7.11 Remark

If (Go, G) is an A—pair, then G is an A-group.

7.12 Theorem ™

Let G be a group with abelian Sylow P-subgroup. Then
pt1GnZ(G)I.

7.13 Theorem 71

Let G be a finite group and P #  prime integers. If G does not have any elements of order P(, then
one of the following holds:

(i) The Sylowp-subgroups or the Sylow g-subgroups of G are abelian.
(if) G/O{p’q},(G) = Mand{p,q} = {5,13}0r{7,13}.

7.14 Theorem 7l

For a given prime P, all Sylow P-subgroups of G are conjugate to each other.

Proof. If a Sylow P-subgroup is unique, then it is equal to all its conjugations and thus normal. If there are
multiple Sylow P-subgroups, they must be conjugate to each other, so none of them can be closed under
conjugation, prohibiting normality. Since any subgroup of an abelian group is normal, a Sylow p-

subgroup must be unique.

8. Factoring Finite Abelian Groups
8.1 Definition "
The sum of subsets A1, A,...A; of agroup G is the subset of all elements of the form Z€=1 a;, where
a; € A; foreach L. If the direct sum of subsets equals (¢, we call this a factorization of the group G .

The notation A + g is used to denote the set of all elements {a + g.-a € A} In a factorization,
each subset A;may be replacedby A; + gj foranyelements g; € G.

8.2 Definition '
A subset A of a group G is said to be periodic if there exists a non-zero element g of G such that
A+ g =A

8.3 Remark ™
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The set H of these periods, together with 0, forms a subgroup of G. Clearly A is a union of cosets of H.
Equivalently, there exists a subset D suchthat A = H + D,whereD is non-periodic.

IfG = Aq+A,+.+Ais afactorizationinwhich Ay = H + Dy then we obtain

a factorization of the quotient group G/H. If, again, one factor is periodic, this process may be continued.
8.4 Definition "

A group has been called goodif in every factorization involving two factors one factor must be periodic.
8.5 Definition "

The group is called K-goodif this holds true for factorizations involving k factors.

8.6 Definition "
Afactorization is said to be bad/if none of the factors is periodic.
8.7 Proposition el
The cyclic group of order 71 is denoted by Z (11). The subgroup generated by a subset A of a group G is
denoted by(A). If A and B are non-periodic subsets and if the sum (A) + B is direct then it has been
shownthat A + B is non-periodic.

8.8 Lemma ™
Leta group G be adirect sum of subgroups H, K of relatively prime orders. Let

G = A + Bbe a factorization of G such that |A| divides |H|. Then G = Ay + Bisalsoa
factorization.

Proof. Let |[H| = m, |K| = n. Since m and N are relatively prime, there exists K such that
kn = 1 (mod m).Since |A|dividesm, it follows that |A| and k7 are relatively prime. It follows
thatknA + B = G is afactorization. Since

knA = ay, itfollowsthat Ay + B = G is afactorization. We should note that this implies that
theelements{@y : a@ € A} aredistinct.

8.9 Theorem
Let G be a cyclic group and let there be a factorization of G in which each factor has either prime power
order or order equal to the product of two primes. Then one of the factors is periodic.

Proof. Let G have order T and generator g. Let X be a character of G such that Y (g) is annth
primitive root of unity. It follows that if ¥ (A;) = 0 where |A;]| is a prime power then A; is periodic.
So we may assume that G = Ay ++--+ A, +-- + Ay, where ¥ (4;) = 0 if and only if
[ < U and that, for these values of [, |A;| = P;q; where p; q; are distinct primes. Let B; be the
(Gpi + qu)—component of A;. By the lemma we may replace A; by B; to obtain the factorization
G= By +--+B, + Ay41 +-+ A From above for some value of I we must have

X (B;) = 0.wemayassumethat ¥ (B;) = 0 and,for convenience, that |B;| = pq.
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let n = pequ where M is not divisible by P or by g. Let @, b, C of orders p®, qf m,
respectively, be a generating set for G. As already noted, since B is a subset of Z(p qf (By) =
0 implies that By is periodic. Since |B;| = pq, it has a period of order P or of order q. Without loss
of generality, we may assume that pe‘la is a period of By. Let H = (pe_la). Then there is a
subset D of order ¢ suchthat By = H + D.Bythe lemma, the elements of B and so also of D are
distinct. Let D = Uj’zl(r] a +s; b) From the form of H we may assume that

0<nr< p® L. ThenfromB; = H + D itfollows that
-1 q

=UU((lpe Y+ 1r)a+sb+e(,j)o)

i=0 j=1
where0 < 5, < g/ ,0 < e(i,j) < m.

Since ¥ (g) has order 1, it follows that Y (@) = a,x (b) = [,x (c) = Y have orders
P, C[f, m, respectively. Then ¥ (A1) = 0 implies that
P—1q ipeDir ns: e@ij) _
Zl:O ]:1 alp r]BS]ye(l] ) - 0
It follows that the polynomial obtained by replacing & by X is divisible by Fpe (x) Thus, the

r+pTh L xTHe-1pT

coefficients of X", X in this polynomial are equal. Hence

z Bsiye) =...= z BSiye®=1J),
T'j=7" Tj=7"
As before, it follows that qu (X) divides, for each [ and i’, the polynomial

z xSiyeli) — Z xSiyelind),

T'j=7" Tj=1'
So the coefficients in this polynomial of x5, xStar-1 Jeen, x5T@-Dar-1 . equal. Now the
pairs (7"] ) Sj ) are distinct. Thus, for a given pair (7,5 + tqf ~1), there is either a unique J with
(T] ) Sj ) equal to this pair or else no suchj exists at all. So, the coefficient in the above polynomial of
.. . B
x ST A ~Lig either of the form ]/e(l’J ) — ]/e(l Jorelseis 0 as no such ] exists.

Suppose for a given T that both situations arise. Then all coefficients are O for this value of 7. Thus
]/e(i’j) = )/e(i,’j Xor the ¥ values of t for which such coefficients arise, where 1 < v < q.
Since the occurrence of (7"] ) Sj )does not involve 1, this occurs for all pairs iandi’. So, for this value of
T, UD terms are involved. For any other value, say ' there must be fewer than P terms involved and so
the same result arises. Hence e(i,j ) = e(i’ ,]) for all I, i’ and ] Therefore Al is periodic with
period pe_la

So we may assume that 7", S exist such that all q values of (1, S + tqe_l),
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0 <t < g, do occur. This gives all pq terms in A1 and since 0 € Ay, it follows that Byis the

subgroup of order Pq. So in this case we have
p-1 ¢q

A = U U(( ipeta+ jg/ b +e(i,j)c).
i=0 j=1
Then, as above, we obtain that for all I, i’,j,]",
ye(i,j) — ye(i’,j) — ye(i;f’) — ye(i’,j’)

These are complex numbers of modulus 1 and from an Argand diagram it is easy to see that they must be
equal in pairs. So three cases can arise as follows:
(Case) e(i,j) = e(i,j) and e(l',))= e j);
(Case2) e(i,j) = e(i',j) and e(i,j') = e(i,j);
(Case3) e(i,j) = e(i',j))+m/2 and e(i',j) = e(i,j’) + m/2.
The third case, in which )/e(i’j) = — )/e(i,'j,), can only arise if M is even. We recall that
0 < e(i,j) < mandallsums being taken modulo m.
Firstly, let us assume that only cases Case 1 and Case 2 occur. If, for a given [
e(i,j ) = e(i,j’)for allj ,j’ then it follows that for all i’ ,j ,]"W€ have
e(i’,j) = e(i’,j"). Hence qf “1bisa period of A1. So we may suppose that for each [ there
exists S, S’ such that e(i,S) # e(i,S"). Then Case 2 holds for this pair S, s’ and for all i’. So
e(i,s) = e(i,s). By Case 2, e(i,j’) = e(i’,j’) for alli’,j’. Hence e(i’,j’) =
e(r,j’)(z e(i,j’))for alli’, r, j' . itfollows that Ay is periodic with periodpe_la. Now we may
suppose that 7, 1" and S, ' exist such that neither Case 1 nor Case 2 is satisfied. Then 1M must be even

and
e(r,s) = e(r',s")Y+m/2,e(r',s) = e(r,s") + m/2.

m/2 e(T,,S,) -

Let)/e(r’s) =p, ye(r',s) = 0 .Thenasy = —1 we have thaty

—p,
ye(r,s') = —0Since neither Case 1 nor Case 2 is satisfied, it follows that
p # 0,p F —0.Since M is even, it follows that P is odd and so that we may replace A; by
2411y (2A1) = 0 then, as above using 2a, 2D as generators, we obtain that

VZe(i,j) _ YZe(i’,j) — VZe(i,j') _ VZe(i’,j’)_
For7, T ands, S’ this implies thatp2 — 0?2 = g% — pZ.This givesD = O or
p = —0 Which is false. We may now proceed by induction on U. If U = 1, we would have the
contradiction of a factorization G = 2A4; + A, +--+ + Ay in which Y (A) is not zero for any
factor A. Thus, in this case, Case 1 or Case 2 must hold always and from the above we have that Al is

periodic. Foru > 1, this new factorization has onlyu — 1 factors, A say, with ¥ (A) = 0.The

required result follows by induction on U. This completes the proof.
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8.10 Theorem "'
Let P be a prime and let G be a group such that the P-component Gp is cyclic. If
G = Aj+A,+.+A, ~+ B isafactorization of G such that each factor A; has order equal to a power
ofp then one of the factors is periodic.
Proof. For each [ let B; be the Gp-component of A;. By the lemma, A; may be replaced by B; and the
elements of B; are distinct. Let H be the subgroup of G which is the complement of Gp. Since the
subsets Bi are contained in Gp it follows that, foreach h € H,

G,+h=5B + +B + (Bn (G, + h).
This leads to the factorization

G, = By +~ +B, + (B n (G, + h)) — h).
Since Gp is a cyclic group of prime power order it follows that one of the factors must be periodic.
Suppose first that no factor B; is periodic. Let Gp have order p¢ and generator @. Then pe_la is a
period of (B N (Gp + h)) — h). andsoof
B N (Gp + h)for eachh € H.Since, as h varies over H, B is the union of these sets it follows
that pe_l(,l is a period of B.
We may now suppose that one of the other subsets, say Bl, is periodic. Then pe‘la is a period. We
should note that this implies that the subsets B5,..,B, are not periodic since the sum with B; being
direct implies that pe_l(l cannot also be a period of one of these sets. It follows that if ¥ is a character
suchthat ¥ (@) hasorderp®then Y (B;) # Ofor2 < i < 1.
Now let us consider the factorization G = A; + By+.+B, + B.For any character ¥ such that
X (@) has order P, we have that either ¥ (A7) = Qorthat y (B) = 0. Let X ,J € ], bethe
set of all such characters such thaty; (A;]) = 0. Let the kernel of X jbe kj, i.e. k]- = {g €
G: Xj (g) = 1}.Lettheintersection of all these subgroups kjbe K. leeF = (pe‘la). We note
that the statement that Y (@) has order p® is equivalent to )y (pe‘la) # 1 and so to the statement
thaty (F) = 0.
Let us suppose that K = 0. Let X j (A;)) = 0.ifh € Handra + h € Ajthenra € By
and so only one such 7" can exist. X (A1) = Oimplies that
ya’ Xj (h) = 0, where the summation is taken overall 7@ + h € A;.Then Fp® (x)divides
yx’ Xj (h).since pe‘la is a period of By, it follows that if
sa + hyisin A; withhy € H thenthereexists b, € H such that
(s + p* Da + h, € Ay
From above it follows that ¥ ; (hy) = Xj (h,) and sothat hy — h, € K] This is true for all
such.Hence h;y — hyisin K. ltfollowsthat h; = hyand so that pe'la is a period of A1.

Finally we have the case inwhich K # 0. Let Y be a character such that
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x(F) =x(K) =0 x(K) = Oimplies that Yy (A7) # 0. Thus y (B) = 0. It
follows that there exist subsets U, V of G such that B is the disjoint union of the direct sums
F 4+ Uand +V.

Now the sum By + B is directand pe_la is a period of By. It follows that U is the empty set and so
that B = K 4+ V.Thus every non-zero element of Kisa period
of B. This completes the proof.

Conclusion

This research project has mainly focused the structure of the finite abelian groups, basis theorem, Sylow's
theorem and factoring finite abelian groups. Further, it compares with groups in general the structure of
finite abelian groups is much easier to investigate since commutatively implies many structural properties

that almost never hold in non-abelian groups.
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