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Abstract:  This paper is discussion the Maximum and minimum energy in vortex motion exploited the conservation of 

vorticity as well as energy in two-dimensional motion of an incompressible inviscid fluid, to find some quite general criteria 

for stability of steady basic flows, and also steady Bènard convection sets in at the critical value of the Rayleigh number. This 

paper also discussion some experiments with a silicone oil (of Prandtl number100). (Abstract text Times New Roman, size 12, 

italic. Spacing-SINGLE). These guidelines provide instructions to format your paper. Please write directly into the template or 

copy your finished text into it choosing ‘match destination formatting’. Please use the predefined formatting styles instead of 

applying your individual settings. The paper shall be written in compliance with these instructions. Please review this 

document to learn about the formatting of text, table captions and references. The conference proceedings will be published 

in an electronic format. The Abstract should be no more than 200 words and one paragraph only. Avoid quotation and citing 

references in your abstract.  
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1. Introduction 

Hydrodynamic stability has a lot in   common   with stability in many other fields, such as    magneto   

hydrodynamics   plasma   physics,  elasticity,    rheology, combustion    and general relativity. The physics 

may be very different but the mathematical essence is that the   physics is modelled by    nonlinear partial  

differential   equations  and     the  stability  of known steady  and unsteady   solutions is examined . 

Hydrodynamics happens to be a mature subject  (the Navier-Stokes equations having been discovered in 

the first half of the nineteenth century), and a given motion of a fluid is often not difficult to produce and to 

see in a laboratory, so   hydrodynamic  stability has much to tell us as a prototype of nonlinear physics in a 

wider context . 

 The kinetic energy of a flow of an incompressible inviscid  fluid has a stationary value when the 

flow is steady,  Kelvien ( 1887) recognized that the flow is stable if  the  stationary value is either a maximum 

or a minimum. Arnol’d (1966) proved these results by use of the calculus of variations and applied them to 

hydrodynamic stability of   various flows. 
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2. Maximum and minimum energy in vortex motion 

2.1. Conservation of Vorticity 

      Arnol’d (1965a) exploited the conservation of vorticity as well as energy  in two-dimensional motion of 

an  incompressible inviscid fluid, to find some quite general criteria for stability of steady basic flows. He 

considered first a general flow in a doubly  connected plane domain D with fixed boundary   which 

consists of two smooth closed curves  1 and 2  . This flow is governed by the vorticity equation 
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on integrating by parts, where 
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 . Therefore 
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Similarly, the second variation can be shown to be  

              
( ) ( ){ }22 21

 =
2 D

f dx dzd dy y dy¢¢D D+ر ٍ  ٍH

.)  (3.1.4  

    Now the stream function   of any steady basic flow satisfies the equation 

                                  
g( )Y = DY

                                    ( 3.1.5  ) 

for some function g. This follows from the vorticity equation  

 ( 3.1.1 ) or from the variational equation ( 3.1.2 ) if   
gf ¢=

so that 0h ؛ .Therefore H is 

a local minimum or maximum where 
y = Y

 if the  integrand of equation ( 3.1.3 ) is positive or 

negative  definite respectively at each point of D. Arnol’d deduced, by appeal to a 

generalization of a well-known result for dynamical systems of finite dimension, that the basic flow is stable 

to disturbances of finite ( but possibly small) amplitude if the integrand of equation ( 3.1.3 ) is either  positive 

or negative definite in some frame of coordinates. ( The essence of  Arnol’d’s deduction can be understood 

by use of a three-dimensional analogy. Suppose then that H = constant is represented by some surface 

in 
3، and K by a Cartesian coordinate. Then each fluid motion is represented by the trajectory where a 

surface H = constant is cut by a plane K  = constant. If H has a maximum or a minimum when

y = Y
, then the surface 0

H = H
is locally a paraboloid touching the  

 

plane 0
H = H

 at the  ‘point’   , where 

 
( ) = Y

0
H H

 and  
( )= Y0K K

. Therefore if 
y

takes any value 1y
  near to   at some 

instant the ensuing motion will be represented by the elliptic trajectory where the plane 

( )1= yK K
cuts   the  paraboloid 

( )1 = yH H
. It follow that K will remain near K0 and 

therefore that  
y

will remain near  for all time. The method depends upon finding a local maximum or 

minimum of H , and so applies to disturbances of finite amplitude, but these disturbances may be of 

small amplitude if another extremum  happens to be nearby .) 

     Arnol’d (1965a) applied this result first to parallel flow between the  
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planes  1 , with equation  1zz 
and  2      with  2zz  . In this example, the basic velocity is 

given by  
( ) ( ) ( ) / ( )U z z d U dz U U¢ ¢ ¢ ¢ ¢¢= Y = =g g

 and the basic vorticity by 

( ),U z¢DY =
 so that 

( ) /f U Uy¢¢ ¢¢D =
. He deduced that the flow is stable if 

/ 0U U ¢¢f
for 21 zzz 

. This result follows also if 0( ) / 0U U U ¢¢- f
 for any 

constant 0U
 . 

 

Application of boundary-layer theory to cellar instability 

When steady Bènard convection sets in at the critical value of the Rayleigh number, the flow is very 

slow, but, as the Rayleigh number increases far above its critical value, a strong cellular flow develops. This 

experimental observation  

led Pillow (1952) to assume that there is a strong steady cellular flow and to neglect viscosity and 

heat conduction in the interior of the cells. Thus he deduced that the fluid in the interior has uniform 

temperature and vorticity, and he analysed the boundary layers at the rigid plates and at the edges of the 

cells. This led to the result that the heat transfer is proportional to 
4

10

5

)( TT 
 , where T0  is the  

temperature of the lower plate and T1  of the upper plate, i.e. that the Nusselt number 
1

4Nu Raµ . This agrees quite well with the values measured in many experiments when Ra is large 

enough for the convection to be strong yet not so large that the 

 flow is unsteady. For example , Threlfall (1975) found that Nu = 0.173Ra0.28 very accurately when 
5 94 10 2 10Ra   in some experiments on liquid helium  ( for which 8.0Pr   ). 

Batchelor applied similar ideas to Taylor vortices, and deduced that the torque between the rotating 

cylinders over a length H is approximately proportional to 

( ) ( )
1 1

2 42 4

1 1 1 1 1/ /H R R d d Rr nW W
 when the outer cylinder is at rest, where the gap width 

12 RRd   , etc. Again there is fair agreement with observed values of the torque when the Taylor number 

is a few times its critical value (Donnelly & Simon 1960). 
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3. Some applications of the nonlinear theory 

3.1. Bènard convection 

Bènard convection of a Boussinesq fluid provides the simplest case for which bifurcation and 

transition to turbulence may be studied theoretically, yet a case for which it is not easy to compare many 

theoretical and experimental results, because of the complexity of the properties of real fluids. In reviewing 

the nonlinear theory, we here, first discuss convection of a Boussinesq fluid between two infinite horizontal 

planes, and then consider the modifications due to non- Boussinesq properties of fluids and to the presence 

of side walls. We shall not  

emphasize the various boundary conditions, but often in the history of the development of the theory a 

particular nonlinear phenomenon has been analysed first for the simplest case of free boundaries and then 

for rigid boundaries, only quantitative differences between the effects of the boundary conditions being 

found. 

Gor’kov ( 1957 ) and, independently but more completely, Malkus & Veronis ( 1958 ), found weakly 

nonlinear steady solutions with various plain-forms of the cells for  slightlysupercritical values of the 

Rayleigh number R  . Their work implies that the Landau constant is positive, and gives the magnitude and 

structure of the disturbance, and hence the heat transfer, as a function of R  for each assumed plan-form, 

although it does not distinguish flows for which there is ascent at the centres of the cells from those for 

which there is descent. 

In the classical linear theory of Bènard convection the most unstable mode is degenerate, in the 

sense that the horizontal plan-form of its cells is indeterminate, although its vertical variation and horizontal 

wavenumber are determinate; the ultimate plan-form of a given disturbance is thus determined by the 

initial horizontal distribution of the most unstable mode. Yet in experiments with a given apparatus, the 

plan-form of the cells may consistently be observed and appears to 

be largely independent of the initial condition .Malkus & Veronis ( 1958 )suggested that the observed plan-

form should correspond to that one of all the possible nonlinear solutions which is itself stable with respect 

to infinitesimal disturbances of the form of the other solutions. 

Schlüter, Lortz &Busse ( 1965 ) went on to consider the general study solution  of a given horizontal 

wavenumber a for small positive value of  cRR 
. They  found an infinity of such  

solutions, and showed that of these the only stable ones correspond to two- dimensional roll cells. 

 Of these roll cells, some with caa 
 are stable but none caa 

is. Schlüter  et al, also calculated 

the heat transfer for small values of cRR 
, showing that for convection between rigid boundaries the 

Nusselt number Nu satisfies ( 1) / ( )c cR Nu R R- -   
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  for fixed 0pr .                                  ( 4.1.1 ) 

These results are consistent with Malkus’s( 1954a,b ) hypothesis of maximal heat transport, namely 

that , of all the possible motions, the one realized will be that for which the heat transport is a maximum, 

because the Nusselt number is largest for rolls. 

Using a Galerkin numerical method, Busse (1967a ) extended these results of Schlüter  et al. for 

values of R up to 30 000 for the special case of rigid boundaries and large values of the Prandtl number. 

His results are illustrated in Fig.4.1.1 There are no steady solutions of horizontal wavenumber a  for 

)(1 aRR   , where R1 here  

denotes the least eginvalue of the appropriate linear problem .For  1RR  , there is an infinity of 

steady finite-amplitude solutions, of which the only stable ones are two-dimensional rolls for values of a 

and R within the region bounded by the curves (B) and (C). The curve (B) is the margin outside of which 

each roll becomes unstable to disturbances of the form of oblique rolls, which grow without oscillations. 

This is called zigzag instability on account of the pattern of the ensuing steady convection, which Busse 

&Whitehead (1971) observed in some experiments with a silicone oil  ( of Prandtl number100).  The curve 

(C) of Fig.4.1.1. is the margin outside of which each two-dimensional roll becomes unstable to disturbances 

of the form of rolls perpendicular to itself? This is called cross-roll instability (Busse &Whitehead 1971), and 

it also sets in as a cellular motion with exchange of stabilities. This represents a limit of current theoretical 

knowledge. If, however, R is above the value (about 23000) of the topmost point of the curve (C) in 

Fig.4.1.1., then another form of instability has 

been observed experimentally by Busse &Whitehead (1971) to set in; this instability leads to a 

 steady three-dimensional motion, as if composed of two perpendicular rolls of different wavenumbers, and 

is called bimodal instability. At 
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Fig.3.1.1 The region of stability of two-dimensional rolls in a fluid of infinite Prandtl number with 

respect to non-oscillatory perturbations. (After Busse 1967a.) 

even higher values of the Rayleigh number a further instability is observed, the motion ceases to be 

steady, and an oscillatory flow arises. 

These theoretical and experimental results differ somewhat if the value of the Prandtl number is 

not large; the quantitative results depend upon its value, though not strongly. Also when the Prandtl number 

is sufficiently low (less than about 1.1 for rigid and 3.5 for free boundaries ) the curve ( C ) is the margin 

outside of which each roll becomes unstable to disturbances of the form of rolls parallel to it self; this is a  

special case  of the  side-band  instability discovered by Eckhaus . Also , Busse  & Clever (1979) showed both 

theoretically and experimentally that two further types of instability of rolls, called knot instability and 

skewed varicos 

e instability , occur when the value of the Prandtl number lies in a certain finite positive interval. The 

instability of two-dimensional steady rolls in convection of a fluid of  small   Prandtl number was 

investigated theoretically by Busse (1972)  and  Clever & Clever  (1974).  They found that when the  

amplitude of a roll exceeds a certain critical value there is shear (rather than gravitational) instability of the 

roll. Thus an oscillatory three-dimensional flow sets in at much lower values of the Rayleigh number than it 

does for a fluid of large Prandtl number.  

The occurrence of hexagonal cells is now attributed to non-Boussinesq properties of the fluid. Palm 

(1960) was the first to consider theoretically the effect of the variation of viscosity with temperature upon 

nonlinear cellular convection. Of  the many subsequent  theoretical papers 

those by  Busse (1967b) and Palm, Ellingsen & Qjevk (1967) may be chosen to give the current view. The 

kinematic   viscocity is assumed to vary slightly with temperature. It is then shown at length that for 

1RRRc 
 only hexagonal cells are stable, for 21 RRR 

 both  hexagonal cells and two-
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dimensional rolls are stable where here cRR 1  and cRR 2  are certain small functions of the 

parameters which are proportional to the derivative 
d d 

 of the kinematic   viscocity of the fluid 

with respect to the  temperature. In addition, subcritical instability occurs; the steady hexagonal cells are in 

fact stable also for the small range cRRR 1  , and there is transcritical bifurcation at cRR 

, where 1 RRc   is a certain function proportional to 
d d 

. For each hexagonal  convection cell 

the flow ascends at center if 
0d dn q p

 descends if 
0d dn q f

.  

 

These theoretical results are confirmed qualitatively by the experiments of Hoard, Robertson & 

Acrivos (1970) which were done in a cylinder containing a liquid hydrocarbon (namely Aroclor 1248) 

whose viscosity varies strongly with temperature. 

     The side walls also have important effects, which must be borne in mind when comparing theoretical 

with experiments results. This effects of side walls are particularly important for convection in deep layers, 

experiments showing concentric circular rolls arise in a container with acircular cross-section and square 

cells in one with a square cross-section. 

      The early experimentalists carefully measured the heat transfer as a function of the Rayleigh number for 

various fluids. This determined the critical Rayleigh number in agreement with the linear theory. Now the 

heat transfer also depends, albeit less strongly, upon the plan-form, the Prandtl number and other factors. 

So it is difficult to compare theoretical and  experimental results in detail. Nonetheless, there is  in general 

satisfactory agreement between them. In particular, Koschmieder & Pallas (1974) measured the heat 

transfer across convecting layers (of depth 
5d m m

 ) of various silicone oils  ( with 500 pr  

1700)   in a  cylindrical container ( of diameter D   13cm ) for  0 < R  170 cR
. For small positive 

values of  R-cR
 they saw concentric circular  rolls and their measurements give 

( ) ( )1 / 1.48;cR Nu R R- - @
 this compares well with the theoretical  result given by 

equations (4.1.1), which gives 
( ) ( )1 / 1.43c cR Nu R R- - ®

 for two-dimensional rolls as 

cR R¯
 for any large values of pr . Koschmieder & Pallas ’s measurements of Nu  when R was a few 

times greater than its critical value agree quite well with the numerical results of Lipps & Somerville (1971). 

Ahers (1974) made some exceptionally accurate 
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measurements on convection in layers ( d  1mm) the experimental techniques available at low 

temperatures allowed him to work with very small temperature differences across the layers of fluid , 

conditions for which the 

Boussinesq approximation is very good . He found that  Nu  increased from the value one smoothly as 

R  increased through cR
 , not abruptly at the onset of instability as given by the usual theory. This result 

is in accord with the theory of imperfections and may be due to side-wall effects . For slightly larger values 

of R , Ahlers fitted his data with the  formula  
3 51 1.034 0.981 0.866Nu e e e= + + -         (4.1.2) 

 

for 
1.07 2.5c cR R R£ £

 and pr  = 1.17, where 

( )/cR R Re = -
 . This is in qualitative agreement with the theoretical results given by equations ( 

4.1.2  ), although Ahlers did not observe the plan-form. He also found that  

( ){ }
0.334

1 0.77 1cNu R R- = -
for  30 R

c R   150 R
c . Threlfall (1975), in further 

experiments on convection in helium at low temperatures, found that  
0.280.173Nu R= for  230 R

c R   106 R
c, in fair agreement with Pillow’ s theoretical result. Observation of steady convection cells 

show that their size tends to increase, and therefore their horizontal wavenumber to decrease, as the 

Rayleigh number increases above its critical value. This seems to be in disagreement with the theoretical 

results illustrated in Fig. 4. 1.1,  because the stable  two-dimensional rolls are found to have wavenumbers 

greater than those on the boundary (B). This analytical conclusion is supported by numerical work. 

Resolution of this disagreement is awaited, but again it must be remembered that the experiments are not 

exactly modelled by the ideal assumptions of the theories without side effect, etc. 

 Krishnamurti (1968) considered both theoretically and experimentally how convection is initiated 

by slow heating of the lower plate or cooling of the upper plate. She assumed that the average basic 

temperature of a Boussinesq fluid increases or decreases slowly at a constant rate. Her results are similar to 

those for a steady basic state of a fluid whose viscosity depends upon the temperature. In particular, she 

found that there is subcritical instability and that hexagonal rather than roll cells arise. The fluid ascends or 

descends at the centers of the cells according to whether the average basic temperature decreases or 

increases respectively with time. The nature of the onset of turbulence itself remains obscure, and may 

indeed depend upon the fluid, the apparatus, and how the convection is initiated. Modern experimental 

techniques, however, make it possible to measure and analyses the frequency spectra of unsteady flows, 
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and offer some evidence of aperiodicity like that of a strange attractor as well as of the periodicity and quasi- 

periodicity of the flows which we have described above. Ahlers (1974) observed that small-amplitude 

oscillations of the heat transfer about a mean value arose with a broad frequency band as R  increases 

through a critical value of tR
 equal to about twice cR

. In later experiments Ahlers & Behringer  (1978) 

found that tR
 decreases with aspect ratio D/2d of the cylindrical container and they suggested that tR

 cR
when D/2d=57.   The periodiccomponent of the flow had not been observed before, perhaps 

because its time scale is slow. The nonlinear phenomena of only classical Bènard convection, rather than its 

many variations and application, have been described for brevity. Some of the in Hopfinger,  Atten & Busse 

(1979), where several modern references may be  found .  
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 الملخص

الدوامية لمائع  )السائل والغاز(    غير اللزج والغير مضغوط  ، هذه الورقة تناقش الطاقة القصوي والدنيا في الحركة 

معتمدة علي حركتان هما : الحركة الدوامية  والحركة ثنائية البعد للمائع  و الخاصيتين  هما للسائل غير اللزج والغير 

 مضغوط فقط

الحرجة لعدد رينولدز وتتناول الدراسة  وأيضا تناقش الورقة  الحمل الحراري وعلاقته  بثابت  بينارد الذي  يحدد القيمة

  مناقشة بعض التجارب مع زيت السيليكون تحت تأثير رقم براندتل  )
ً
 ( 100ايضا
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