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1. Introduction

Hydrodynamicstability hasalotin common with stability in many other fields, such as magneto
hydrodynamics plasma physics, elasticity, rheology, combustion and general relativity. The physics
may be very different but the mathematical essence is that the physics is modelled by nonlinear partial
differential equations and  the stability of known steady and unsteady solutions is examined .
Hydrodynamics happens to be a mature subject (the Navier-Stokes equations having been discovered in
the first half of the nineteenth century), and a given motion of a fluid is often not difficult to produce and to
see in a laboratory, so hydrodynamic stability has much to tell us as a prototype of nonlinear physics in a
wider context .

The kinetic energy of a flow of an incompressible inviscid fluid has a stationary value when the
flow is steady, Kelvien (1887) recognized that the flow is stable if the stationary value is either a maximum
or a minimum. Arnol’d (1966) proved these results by use of the calculus of variations and applied them to

hydrodynamic stability of various flows.
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2. Maximum and minimum energy in vortex motion
2.1. Conservation of Vorticity
Arnol'd (1965a) exploited the conservation of vorticity as well as energy in two-dimensional motion of

an incompressible inviscid fluid, to find some quite general criteria for stability of steady basic flows. He

considered first a general flow in a doubly connected plane domain D with fixed boundary F which

consists of two smooth closed curves ~ Land 2. This flow is governed by the vorticity equation
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on integrating by parts, where
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Similarly, the second variation can be shown to be

v :%  feay e y)pasYaxar

(31.4).

Now the stream function \P of any steady basic flow satisfies the equation

Y =9(DY) (31.5)

for some function g. This follows from the vorticity equation

(3.1.1) or from the variational equation ( 3.1.2) if f¢_ g

y=Y

¢ v o
so that h ) O Therefore %// is

a local minimum or maximum where if the integrand of equation ( 3.1.3) is positive or
negative definite respectively at each point of D. Arnol’d deduced, by appeal to a

generalization of a well-known result for dynamical systems of finite dimension, that the basic flow is stable
to disturbances of finite (but possibly small) amplitude if the integrand of equation (3.1.3 ) is either positive

or negative definite in some frame of coordinates. ( The essence of Arnol'd’s deduction can be understood

by use of a three-dimensional analogy. Suppose then that

3

in ¢ and K by a Cartesian coordinate. Then each fluid motion is represented by the trajectory where a

Cyo
. constant is cut by a plane K = constant. If

y=Y A=A

, then the surface “ islocally a paraboloid touching the

constant is represented by some surface

S
surface a has a maximum or a minimum when

plane “ atthe ‘point’ \P ,where

7 =7 (Y) = H(Y)

4 1
. Therefore if takes any value near to LP atsome

instant the ensuing motion will be represented by the elliptic trajectory where the plane

cuts the paraboloid . It follow that K will remain near K, and

therefore that will remain near ¥ for all time. The method depends upon finding a local maximum or

small amplitude if another extremum happens to be nearby .)

minimum of , and so applies to disturbances of finite amplitude, but these disturbances may be of

Arnol'd (1965a) applied this result first to parallel flow between the
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z=z, T =1,

planes 1,withequation and 2 with

U(2) = YE2) = dgUD] dz= gqUU¢

.In this example, the basic velocity is

given by and the basic vorticity by

fUDy) = Ul U¢_ DY = U{2),

. He deduced that the flow is stable if that
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for any . This result follows also if

constant

Application of boundary-layer theory to cellar instability

When steady Bénard convection sets in at the critical value of the Rayleigh number, the flow is very
slow, but, as the Rayleigh number increases far above its critical value, a strong cellular flow develops. This
experimental observation

led Pillow (1952) to assume that there is a strong steady cellular flow and to neglect viscosity and
heat conduction in the interior of the cells. Thus he deduced that the fluid in the interior has uniform

temperature and vorticity, and he analysed the boundary layers at the rigid plates and at the edges of the

(To - Tl) 7

cells. This led to the result that the heat transfer is proportional to ,where 7, is the

temperature of the lower plate and 7; of the upper plate, i.e. that the Nusselt number

Nu p Ra"

. This agrees quite well with the values measured in many experiments when Ra is large
enough for the convection to be strong yet not so large that the

flow is unsteady. For example , Threlfall (1975) found that Nu = 0.173Ra*® very accurately when
4x10° < Ra<2x10° hPr=08,

Batchelor applied similarideas to Taylor vortices, and deduced that the torque between the rotating

in some experiments on liquid helium (for whic

cylinders over a length His approximately proportional to

HrWR! (n WRd)* (@I R
d=R,-R,

when the outer cylinder is at rest, where the gap width

,etc. Again there is fair agreement with observed values of the torque when the Taylor number

is a few times its critical value (Donnelly & Simon 1960).
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3. Some applications of the nonlinear theory
3.1. Bénard convection

Bénard convection of a Boussinesq fluid provides the simplest case for which bifurcation and
transition to turbulence may be studied theoretically, yet a case for which it is not easy to compare many
theoretical and experimental results, because of the complexity of the properties of real fluids. In reviewing
the nonlinear theory, we here, first discuss convection of a Boussinesq fluid between two infinite horizontal
planes, and then consider the modifications due to non- Boussinesq properties of fluids and to the presence
of side walls. We shall not
emphasize the various boundary conditions, but often in the history of the development of the theory a
particular nonlinear phenomenon has been analysed first for the simplest case of free boundaries and then
for rigid boundaries, only quantitative differences between the effects of the boundary conditions being
found.

Gor’kov (1957) and, independently but more completely, Malkus & Veronis (1958 ), found weakly

nonlinear steady solutions with various plain-forms of the cells for slightlysupercritical values of the

R

Rayleigh number . Their work implies that the Landau constant is positive, and gives the magnitude and

structure of the disturbance, and hence the heat transfer, as a function of R for each assumed plan-form,
although it does not distinguish flows for which there is ascent at the centres of the cells from those for
which there is descent.

In the classical linear theory of Bénard convection the most unstable mode is degenerate, in the
sense that the horizontal plan-form of its cells is indeterminate, although its vertical variation and horizontal
wavenumber are determinate; the ultimate plan-form of a given disturbance is thus determined by the
initial horizontal distribution of the most unstable mode. Yet in experiments with a given apparatus, the
plan-form of the cells may consistently be observed and appears to
be largely independent of the initial condition .Malkus & Veronis ( 1958 )suggested that the observed plan-
form should correspond to that one of all the possible nonlinear solutions which is itself stable with respect
to infinitesimal disturbances of the form of the other solutions.

Schliiter, Lortz &Busse (1965 ) went on to consider the general study solution of a given horizontal

wavenumber afor small positive value of c. They found an infinity of such

solutions, and showed that of these the only stable ones correspond to two- dimensional roll cells.

da>ad <a

Of these roll cells, some with ¢

c

are stable but none is. Schliiter er a/ also calculated

the heat transfer for small values of ¢ showing that for convection between rigid boundaries the

R(Nu- DI (R- R)

Nusselt number Nusatisfies
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#0.69942- 0.00472pr * + 0.00832pr 2) " for rolls
® 140.77890+ 0.03996pr * + 0.06363pr *) " for square cells
(0.89360 + 0.04959pr" * + 0.06787 pr %) " for hexagonal cells

As R\LRC for fixed prio.

(41.1)
These results are consistent with Malkus's(1954a,b) hypothesis of maximal heat transport, namely
that, of all the possible motions, the one realized will be that for which the heat transport is a maximum,

because the Nusselt number is largest for rolls.

Using a Galerkin numerical method, Busse (1967a ) extended these results of Schliiter er a/. for

values of R up to 30 000 for the special case of rigid boundaries and large values of the Prandtl number.

His results are illustrated in Fig.4.1.1 There are no steady solutions of horizontal wavenumber a for

R< R1 (a) ,where R, here

denotes the least eginvalue of the appropriate linear problem .For ~ 1, there is an infinity of
steady finite-amplitude solutions, of which the only stable ones are two-dimensional rolls for values of a
and R within the region bounded by the curves (B) and (C). The curve (B) is the margin outside of which
each roll becomes unstable to disturbances of the form of oblique rolls, which grow without oscillations.
This is called zigzag instability on account of the pattern of the ensuing steady convection, which Busse
&Whitehead (1971) observed in some experiments with a silicone oil ( of Prandtl number100). The curve
(C) of Fig.4.1.1.is the margin outside of which each two-dimensional roll becomes unstable to disturbances
of the form of rolls perpendicular to itself? This is called cross-roll instability (Busse &Whitehead 1971), and
it also sets in as a cellular motion with exchange of stabilities. This represents a limit of current theoretical
knowledge. If, however, R is above the value (about 23000) of the topmost point of the curve (C) in
Fig.4.1.1., then another form of instability has
been observed experimentally by Busse &Whitehead (1971) to set in; this instability leads to a
steady three-dimensional motion, as if composed of two perpendicular rolls of different wavenumbers, and

is called bimodal instability. At
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Fig.3.1.1 The region of stability of two-dimensional rolls in a fluid of infinite Prandtl number with
respect to non-oscillatory perturbations. (After Busse 1967a.)

even higher values of the Rayleigh number a further instability is observed, the motion ceases to be
steady, and an oscillatory flow arises.

These theoretical and experimental results differ somewhat if the value of the Prandtl number is
not large; the quantitative results depend uponits value, though not strongly. Also when the Prandtl number
is sufficiently low (less than about 1.1 for rigid and 3.5 for free boundaries ) the curve ( C) is the margin
outside of which each roll becomes unstable to disturbances of the form of rolls parallel to it self; this is a
special case of the side-band instability discovered by Eckhaus . Also, Busse & Clever (1979) showed both
theoretically and experimentally that two further types of instability of rolls, called knor instability and
skewed varicos
e instability , occur when the value of the Prandtl number lies in a certain finite positive interval. The
instability of two-dimensional steady rolls in convection of a fluid of small Prandtl number was
investigated theoretically by Busse (1972) and Clever & Clever (1974). They found that when the
amplitude of a roll exceeds a certain critical value there is shear (rather than gravitational) instability of the
roll. Thus an oscillatory three-dimensional flow sets in at much lower values of the Rayleigh number than it
does for a fluid of large Prandtl number.

The occurrence of hexagonal cells is now attributed to non-Boussinesq properties of the fluid. Palm
(1960) was the first to consider theoretically the effect of the variation of viscosity with temperature upon
nonlinear cellular convection. Of the many subsequent theoretical papers
those by Busse (1967b) and Palm, Ellingsen & Qjevk (1967) may be chosen to give the current view. The

kinematic  viscocity is assumed to vary slightly with temperature. It is then shown at length that for

R.<R<R R, <R<R

only hexagonal cells are stable, for 2 both hexagonal cells and two-
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dimensional rolls are stable where here are certain small functions of the

dv/do

with respect to the temperature. In addition, subcritical instability occurs; the steady hexagonal cells are in

R, <R=<R, R=R,

parameters which are proportional to the derivative of the kinematic viscocity of the fluid

,and there is transcritical bifurcation at

d V/d 6 .For each hexagonal convection cell
dn/dqf 0

factstable also for the small range

Rc - R—l

,where is a certain function proportional to

dn/a’qp 0

the flow ascends at center if descends if

These theoretical results are confirmed qualitatively by the experiments of Hoard, Robertson &
Acrivos (1970) which were done in a cylinder containing a liquid hydrocarbon (namely Aroclor 1248)
whose viscosity varies strongly with temperature.

The side walls also have important effects, which must be borne in mind when comparing theoretical
with experiments results. This effects of side walls are particularly important for convection in deep layers,
experiments showing concentric circular rolls arise in a container with acircular cross-section and square
cells in one with a square cross-section.

The early experimentalists carefully measured the heat transfer as a function of the Rayleigh number for
various fluids. This determined the critical Rayleigh number in agreement with the linear theory. Now the
heat transfer also depends, albeit less strongly, upon the plan-form, the Prandtl number and other factors.
So it is difficult to compare theoretical and experimental results in detail. Nonetheless, there is in general

satisfactory agreement between them. In particular, Koschmieder & Pallas (1974) measured the heat

d=5mm

transfer across convecting layers (of depth ) of various silicone oils ( with 5000 pr
01700) ina cylindrical container ( of diameter D ~ 13cm ) for 0< " 0170 . For small positive

values ofthey saw concentric circular rolls and their measurements give C-R

RWNu- 1) (R- R) @1.48;

this compares well with the theoretical result given by

R.(Nu- 1)/ (R- R)® 1.43

for two-dimensional rolls as

R

equations (4.1.1), which gives

R

r . 7
¢ forany large values of P .Koschmieder & Pallas ‘s measurements of Nu when "' wasafew
times greater than its critical value agree quite well with the numerical results of Lipps & Somerville (1971).

Ahers (1974) made some exceptionally accurate
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measurements on convection in layers ( d ® 1mm) the experimental techniques available at low
temperatures allowed him to work with very small temperature differences across the layers of fluid ,

conditions for which the

Nu

Boussinesq approximation is very good . He found that

R

increased from the value one smoothly as

increased through ¢ not abruptly at the onset of instability as given by the usual theory. This result

is in accord with the theory of imperfections and may be due to side-wall effects . For slightly larger values

of R,Ahlers fitted his data with the formula
Nu= 1+ 1.034e+ 0.9816 - 0.866¢° (1,

107k £ RE 25K, pr

f =1.17, where

e= (R- R) R
. This is in qualitative agreement with the theoretical results given by equations (

41.2 ), although Ahlers did not observe the plan-form. He also found that
0.334

Nu- 1= 0.77AR/R.)- 1
{( / c) for 30Rc8 R a’ISORC.Threlfall (1975), in further

Mu= 0.173R°%, . R

experiments on convection in helium at low temperatures, found that
R ¥at
0™ o010

show that their size tends to increase, and therefore their horizontal wavenumber to decrease, as the

o in fair agreement with Pillow’ s theoretical result. Observation of steady convection cells

Rayleigh number increases above its critical value. This seems to be in disagreement with the theoretical
results illustrated in Fig. 4. 1.1, because the stable two-dimensional rolls are found to have wavenumbers
greater than those on the boundary (B). This analytical conclusion is supported by numerical work.
Resolution of this disagreement is awaited, but again it must be remembered that the experiments are not
exactly modelled by the ideal assumptions of the theories without side effect, etc.

Krishnamurti (1968) considered both theoretically and experimentally how convection is initiated
by slow heating of the lower plate or cooling of the upper plate. She assumed that the average basic
temperature of a Boussinesq fluid increases or decreases slowly at a constant rate. Her results are similar to
those for a steady basic state of a fluid whose viscosity depends upon the temperature. In particular, she
found that there is subcritical instability and that hexagonal rather than roll cells arise. The fluid ascends or
descends at the centers of the cells according to whether the average basic temperature decreases or
increases respectively with time. The nature of the onset of turbulence itself remains obscure, and may
indeed depend upon the fluid, the apparatus, and how the convection is initiated. Modern experimental

techniques, however, make it possible to measure and analyses the frequency spectra of unsteady flows,
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and offer some evidence of aperiodicity like that of a strange attractor as well as of the periodicity and quasi-

periodicity of the flows which we have described above. Ahlers (1974) observed that small-amplitude

oscillations of the heat transfer about a mean value arose with a broad frequency band as R increases

t

through a critical value of equal to about twice = €. In later experiments Ahlers & Behringer (1978)

foundthat ! decreases with aspect ratio D/2d of the cylindrical container and they suggested that t

R
< Cwhen D/2d=57. The periodiccomponent of the flow had not been observed before, perhaps
because its time scale is slow. The nonlinear phenomena of only classical Benard convection, rather than its
many variations and application, have been described for brevity. Some of the in Hopfinger, Atten & Busse

(1979), where several modern references may be found.
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