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Abstract: When the derivative of a function is non-integer order, e.g. the 1/2 derivative, known as fractional calculus. The 

fractional heat equation is a generalization of the standard heat equation as it uses an arbitrary derivative order close to 1 for 

the time derivative. We present a stander solution to an initial-boundary-value - heat equation problem and the solution to 

an initial-boundary-value -  fractional heat equation problem. Our aim is to apply fractional Laplace trance form method and 

Fourier trance form method to solve the heat diffusion equations with fractional derivative and integral. In this study we used 

Fourier and Laplace transform methods. We conclude that the fractional heat equation is a physically legitimate 

generalization of the standard heat equation that might be used for values α ≈ 1. As expected all solutions sufficiently close 

to  α satisfy  the boundary conditions and display physically realistic properties 
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1. Introduction 

Fractional Calculus is a field of mathematic study that grows out of the traditional definitions of the 

calculus derivative and integral operators [4]. Historically as most writers have mentioned the birth of so-

called ‘Fractional Calculus’. In a letter dated September 30th, 1695 L’Hopital [4] wrote to Leibniz asking him 

about a particular notation he had used in his publications for the nth-derivative of the linear function f(x) 

= x,  
Dnx

Dxn
  . L’Hopital’s posed the question to Leibniz, what would the result be if n = 1/2. Leibniz’s response: 

”An apparent paradox, from which one day useful consequences will be drawn.” In these words, fractional 

calculus was born. Fractional Calculus [8]. used to solve many problems that applied to science and 

engineering (physical fields) with many methods, one of them fractional diffusion which have been applied 

in this paper to solve heat equation which can be divine as follows. The diffusion equation is a partial 

differential equation which depicts density dynamics in a material undergoing diffusion. The modified 

diffusion equations are used to portray some processes exhibiting diffusive-like behavior, which have a 

broad range of applications in mathematical physics, integral system and fluid mechanics. Thence, lots of 

methods have been used to solve this type of equations. In recent years, the fractional derivative with 

derivative of arbitrary orders have been developed to handle with problems in many areas, such as physics, 

applied mathematics, engineering and so forth. The fractional derivative can be defined in many forms, such 

as the Caputo derivative, the Riemann-Liouville derivative [5], the Gr¨unwald-Letnikov derivative and so 
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on . However, most of them do not deal with the non-differentiable functions defined on Cantor sets. The 

local fractional derivative describes[5] the non-differential problems defined on Cantor sets, while the 

classical derivative and most fractional derivative deal with functions in Euclidean space, the theory has 

been successfully applied in investigating equations in fractal-like media, for example, the Navier-Stokes 

equations, the Helmholtz equations and the diffusion equations [5] Many methods have also developed to 

deal with the local fractional differential equations, such as the local fractional function decomposition 

method, the differential transform approach, the local fractional the variational iteration transform method  

and so on. In this study, our aim is to apply fractional  Laplace  trance form method and Fourier trance form 

method to solve the heat diffusion equations with fractional derivative and integral .  

 

Methods: In this paper we used Laplace transform method and Fourier transform method with respect to 

Mittag Leffler integral equation. 

 

2. The solution of   stander heat equation: 

The standard heat equation is 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
 .For this equation the temperature represented by u, which is a 

function of time t, and space  x. [4],in this case   we  used the derivative operator D to write the heat equation   

with the following notation 

                                                     Dt u = 𝐷𝑥
2u.                                                (1). 

Consider an ideal one-dimensional rod of length L with the boundary conditions 

                                            u(t, 0) = u(t ,L) = 0        , t ≥ 0 .                          (2).         

                                                     u(x,o)   = f(x)   .                                         (3). 

the solution is assumed to be of the form  u(x,t) = X(x)T(t) plugging this in to equation (1) we obtain :                             

                                       𝑢𝑡(𝑡, 𝑥) = 𝑇´(𝑡)𝑋(𝑥) .                                           (4)  . 

                                      𝑢𝑥𝑥(𝑡, 𝑥) = 𝑇 (𝑡)𝑋´´(𝑥)  .                                        (5) . 

yields    

                                          𝑇´𝑡)𝑋(𝑥) = 𝑇 (𝑡)𝑋´´(𝑥) .                                    (6) . 

Since this equation is separable there exists a constant of separation  𝐶 ∈ 𝑅  , such that                      

     
𝑇´(𝑡)

𝑇 (𝑡)
=  

𝑋´´(𝑥)

𝑋(𝑥)
 = C .                                               (7). 

To obtain a non-trival  real solution, assume C ˃ 0 , this will satisfy the property of temperature 

decay to the defined  boundary conditions. Thus we let  C = - λ2  for   λ ϵ R and we must solve the ordinary 

differential equations (ODEs) : 

                                             𝑋´´(𝑥) =   − λ2X(x)  .                                        (8).   

                                              𝑋´´(𝑥) +  λ2X(x) = 0   .                                   (9).   
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equation (9) is homogeneous differential equations of second order. Suppose X(x) =   e𝑚𝑥   then  

𝑋´´(𝑥) =   m2  e𝑚𝑥  
by substitution the above values in equation (9) we obtain: 

 m2 +  λ2 = 0   
 m2 =  − λ2 

𝑚 =  ∓ λi      

for this we obtain  X(x) =  𝑐1 eλix + 𝑐2 e−λix    

this (ODEs) have the solutions  
                                                                     X(x) =  𝑐1𝑐𝑜𝑠λx + 𝑐2 sin λx   .                      (10)  . 

And    𝑇´(𝑡) +  λ2𝑇(𝑡) = 0  .                                                                    (11) . 

suppose T(t) =   e𝑚𝑥  then 𝑇´(𝑡) = 𝑚 e𝑚𝑥  by substitution the values in equa- tion (11) we obtain 

: 

𝑚 e𝑚𝑥 +  λ2  e𝑚𝑥 = 𝑜 
𝑚 +  λ2 = 0   

𝑚 =  − λ2 

Then 𝑇(𝑡) =  𝑐3  e
− λ2𝑡   

Preassigning the constant leads to general solution to heat equation (1)  

                       u(t, x)  = 𝐴cos (λx) e− λ2𝑡 + 𝐵 sin(λx ) e− λ2𝑡   .                   (12). 

where     A= C 1 C 3          , B= C 2 C 3  

We satisfying the boundary condition: 

secondLY moved on to the particular solution and started by satis- fying the boundary conditions (2).By 

inspection, the condition u(t, 0) = 0 requires A = 0. The only non-trivial way to satisfy u(t ,L) = 0 is by solving 

sin(λL) = 0.  

Thus 

λ n   =  
𝑛𝜋

𝐿
                we find that : 

                            u(t, x) = X(x) T(t) = 𝐵 sin(𝜆𝑛 x ) e−( 
𝑛𝜋

𝐿
)2𝑡 .                      (13). 

                   𝑢𝑛(𝑡, 𝑥) = 𝑋(𝑥)𝑇(𝑡) =  𝐵𝑛  sin (
𝑛𝜋

𝐿
 𝑥) 𝑒−( 

𝑛𝜋

𝐿
)2𝑡  .                   (14).       

for n ∈ N, yields infinitely many solutions to the heat equation (The sum of such solutions is given by the 

Fourier series solution) by using the properties of sine and cosine and reached to this  particular solution. 

 

                             𝑢𝑛(𝑥, 𝑡) = ∑  𝐵𝑛  sin (
𝑛𝜋

𝐿
 𝑥)∞

𝑛=1 𝑒−( 
𝑛𝜋

𝐿
)2𝑡 .                     (15). 

By satisfying  

                                    u(0,x) = f(x)  = ∑  𝐵𝑛  sin (
𝑛𝜋

𝐿
 𝑥)∞

𝑛=1 .                       (16). 

The  𝐵𝑛can be calculated from  
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 𝐵𝑛 =
2

𝑙
∫ 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥

𝑡

0

 

5.3 The solution of   fractional heat diffusion 

To solve fractional heat diffusion  

                                      Dt
∝u(x, t) =  

∂2u(x,t)

∂x2
.                                               (17).  

With  initial value  : 

                                                 u(x,0)= f(x)              , (x∞,t 0).              (18).   

                            lim
x∓∞

u(x, t) = 0    , (t 0).               .                              (19). 

When  0 <∝< 1  we take   Laplace transform to x we obtain    

ʆ  {Dt
∝f(t), s} =  s∝ F(s) − s∝−1 f(0).                  (20).  

Applied (17),(18),(19) in (20) yields  

                             s 
∝ũ(x, t) − s∝−1 f(x) =  

∂2ũ(x,s) 

∂x2
        , (x∞).                   (21). 

                                              lim
x∓∞

ũ(x, s) = 0       , t >  0.                      ( 22). 

applying   Fourier exponential transform to t in equation(21) and  

utilizing the boundary conditions (22) we obtain  

                                     �̃̃� (,s)= 
𝑠∝−1

𝑠∝+𝛽2
 𝐹(𝛽).                                                     (23). 

where  �̃̃� (,s) and F (𝛽)    are the Fourier   transform of ũ(x, s) 

is    
𝒔∝−𝟏

𝒔∝+𝜷𝟐
   fraction and f(x).the inverse Laplace transform of mittag-leffler function in tow pa-       . 

(whereE∝,1  E∝,1(𝛽2𝑡∝) 

rameters) there for in varsion Fourier and the Laplace transform gives the solution in form:                                                            

                         u (x, t)  =  ∫ 𝐺(𝑥 − , 𝑡)𝑓()𝑑 .                               
∞

−∞
         (24). 

  G (x, t) = 
1

𝜋
∫ E∝,1(𝛽2𝑡∝) cos(𝛽𝑥∝)𝑑𝛽.

∞

0
 

                                  = 𝑡−𝑝 𝑤(−𝑧 , −𝑝 , 1 − 𝑝).                                             (25).   

           . Where w (z, p,1-p) is the wright function 

In order to get special solution, we used many values of ∝           

In stander  fractional heat diffusion 

Dt
∝u(x, t) =  

∂2u(x,t)

∂x2
 . 

 Case 1. at   = 1/2  it takes the form    

                                      Dt
1/2

u(x, t) =  
∂2u(x,t)

∂x2
   .                                           (26). 

The boundary conditions  : 

u(x,0)= f(x)              , (x∞,t 0).                   (27). 
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                            lim
x∓∞

u(x, t) = 0    , (t 0).                              .                 (28). 

When we take   Laplace transform to t we obtain   : 

ʆ  {Dt

1

2f(t), s} =  s1/2 F(s) − s
1

2
−1 f(0). 

                                           = s1/2 F(s) − s−1/2 f(0).                                  (29). 

Applied (26),(27),(28) in (29) yields  

                    s 

1

2ũ(x, t) − s−1/2 f(x) =  
∂2ũ(x,t) 

∂x2
    , (x∞).                             (30).                            

                                        lim
x∓∞

ũ(x, s) = 0       , t >  0.                                    (31). 

applying   Fourier exponential transform to x in equation(30) and utilizing the boundary conditions (31) we 

obtain 

                                           �̃̃� (,s)= 
𝑠−1/2

𝑠1/2+𝛽2
 𝐹(𝛽).                   (5.3.14).(32). 

where  �̃̃� (,s) and F (𝛽)    are the Fourier   transform of ũ(x, s) 

is  
𝒔−𝟏/𝟐

𝒔𝟏/𝟐+𝜷𝟐
   fraction and f(x).the inverse Laplace transform of is mittag-leffler function in tow parmeters) 

there for in varsion       . (whereE1

2
,1

  E1

2
,1

(𝛽2𝑡
1

2) 

 Fourier and the Laplace transform gives the solution in form:                                                             

                       u (x, t) = ∫ 𝐺(𝑥 − , 𝑡)𝑓()𝑑 .                                              (33).
∞

−∞
 

                         G (x, t) = 
1

𝜋
∫ E1

2
,1

(𝛽2𝑡
1

2) cos(𝛽𝑥)𝑑𝛽.
∞

0
                               (34). 

𝑡−𝑝 𝑤(−𝑧 , −𝑝 , 1 − 𝑝) = 

           . Where w (z, p,1-p) is the wright function 

Case 2.   Dx
∝u(x, t) =  

𝜕2u(x,t)

∂t2
    

  at   = 1/2   it takes the form    

                                     Dx

1

2 u(x, t) =  
𝜕2u(x,t)

∂t2
.                                                 (35). 

The boundary conditions  : 

                                     u(0,t) = f(x)              , (x∞,t 0).                          (36).  

                                           lim
x∓∞

u(x, t) = 0    , (t 0).                                (37). 

 When we take   Laplace transform to x we obtain   : 

   ʆ  {Dx

1

2 f(x, s)} =  s1/2 F(s) − s
1

2
−1 f(0).                                     

                                                     = s1/2 F(s) − s−1/2 f(0).                           )38). 

Applied (35),(36),(37) in (38) yields  

                  s 

1

2ũ(x, s) − s−1/2 f(t) =  
 𝜕2 ũ(x,t) 

∂t2
        , (x∞).                         (39). 
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                                       lim
x∓∞

ũ(x, s) = 0       , t >  0.                               (40). applying  Fourier 

exponential transform to t in equation(5.3.20) and utilizing the boundary conditions (40) we obtain 

                                            �̃̃�(𝛽, 𝑠) =
𝑠−1/2

𝑠1/2+𝛽2
 𝐹(𝛽).                                   (41). 

where  �̃̃�(𝛽, 𝑠) and F (𝛽)    are the Fourier  transform of ũ(t, s) and f(x). The         

inverse Laplace transform of fraction 
𝒔−𝟏/𝟐

𝒔𝟏/𝟐+𝜷𝟐
 is   E1,1

2
(∝2 𝑡) . (whereE

1,
1

2

 is 

mittag-leffler function in tow parameters) there for in varsion Fourier and the     Laplace transform gives the 

solution in form:                                                   

                                            u (x, t) = ∫ 𝐺(𝑥 − , 𝑡)𝑓()𝑑 .             
∞

−∞
         (42). 

                                G (x, t) = 
1

𝜋
∫ E1

2
,1

(𝛽2𝑡) cos(𝛽𝑥)𝑑𝛽.
∞

0
                          (43).                        

𝑡−𝑝 𝑤(−𝑧 , −𝑝 , 1 − 𝑝) =   

           . Where w (z, p,1-p) is the wright function 

Case 3. 

Dt
∝u(x, t) =  

∂2u(x,t)

∂x2
 .      

at   = 3/2  it takes the form    

                                                Dt
3/2

u(x, t) =  
∂2u(x,t)

∂x2
   .                               (44). 

The boundary conditions  : 

                                u(x,0)= f(x)              , (x∞,t 0) .                              (45). 

                                      lim
x∓∞

u(x, t) = 0    , (t 0).                                    (46). 

When we take   Laplace transform to t we obtain: 

ʆ  {Dt

3

2f(t, . s)} =  s3/2 F(s) − s
3

2
−1 f(0).  

                                                = s3/2 F(s) − s1/2 f(0).                               (47). 

Applied(44),(45a),(46) in (47). yields  

                       s 

3

2ũ(x, t) − s1/2 f(x) =  
∂2ũ(x,t) 

∂x2
        , (x∞).                       (48). 

                                      lim
x∓∞

ũ(x, s) = 0       , t >  0.                                   (49). 

applying Fourier exponential transform to x in equation(48) and utilizing the boundary conditions (49)we 

obtain 

                                      �̃̃� (𝛽, 𝑠) =  
𝑠1/2

𝑠3/2+𝛽2
 𝐹(𝛽) .                                      (50). 

where   �̃̃�(,s) and F (𝛽) are the Fourier   transform of ũ(x, s) and f(x). The inverse Laplace transform of  

fraction  
𝒔𝟏/𝟐

𝒔𝟑/𝟐+𝜷𝟐
 is E3

2
,1

(𝛽2𝑡
3

2) . (where  
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E3

2
,1

 is Mittag-leffler function in tow parameters ) there for in varsion Fourier and the Laplace transform 

gives the solution in form:                                                             

                                        u (x, t) = ∫ 𝐺(𝑥 − , 𝑡)𝑓()𝑑 .            
∞

−∞
              (51). 

               G (x, t) = 
1

𝜋
∫ E3

2
,1

(𝛽2𝑡
3

2) cos(𝛽𝑥)𝑑𝛽.      
∞

0
               (52). 

𝑡−𝑝 𝑤(−𝑧 , −𝑝 , 1 − 𝑝) =      

           . Where w (z, p,1-p) is the wright function 

Case. 4   Dx
∝u(x, t) =  

𝜕2u(x,t)

∂t2
   When ∝ = 3/2 

                                                Dx

3

2 u(x, t) =  
𝜕2u(x,t)

∂t2
     .                                    (53). 

The boundary conditions  : 

                            u(0,t)= f(t)              , (x∞,t 0).                                     (54). 

                                      lim
x∓∞

u(x, t) = 0    , (t 0).                                     (55). 

When we take   Laplace transform to x we obtain 

              ʆ  {Dx

3

2 f(x, . s)} =  s3/2 F(s) − s
3

2
−1 f(0).         

                                            = s3/2 F(s) − s1/2 f(0).                                   (56). 

Applied (53),(54),(55) in(56) yields  

                          s 

3

2ũ(s, t) − s1/2 f(t) =  
𝜕2ũ(x,t) 

∂𝑡2
        , (x∞).                        (57). 

                                   lim
x∓∞

ũ(s, t) = 0       , t >  0.                                       (58). 

applying Fourier exponential transform to t in equation (57) and utilizing the boundary conditions (58) we 

obtain: 

                                           �̃̃� (𝛽, 𝑠) =  
𝑠1/2

𝑠3/2+𝛽2
 𝐹(𝛽).                                  (59).                                

where   �̃̃� (𝛽, 𝑠) and F (𝛽)    are the Fourier  transform of ũ(x, s) 

and f(x). the inverse Laplace transform of the fraction 
𝒔𝟏/𝟐

𝒔𝟑/𝟐+𝜷𝟐
 is 

E
1,

3

2

(𝛽2𝑡
3

2). (whereE
1,

3

2

 mittag-leffler function in tow pa rameters) 

there for in varsion Fourier and the Laplace transform gives the solution in form:                                                             

                         u (x, t) = ∫ 𝐺(𝑥 − , 𝑡)𝑓()𝑑 .
∞

−∞
                                      (60). 

             G (x, t) = 
1

𝜋
∫ E3

2
,1

(𝛽2𝑡
3

2) cos(𝛽𝑥)𝑑𝛽.
∞

0
                        (61). 

                                  =𝑡−𝑝 𝑤(−𝑧 , −𝑝 , 1 − 𝑝).                 

           . Where w (z, p,1-p) is the wright function 
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3. Discussion:  

Now the theory of fractional differential equation is very important in many applications in this 

study we used the Laplace and Fourier method to solve heat diffusion. We anticipate that is possible to solve 

many partial fractional differential equations like wave equation, Schrodinger equation and Burger 

equation. 

 

4. Conclusion: 

We conclude that the fractional heat equation is a physically legitimate generalization of the 

standard heat equation that might be used for values α ≈ 1. As expected all solutions sufficiently close to  α 

satisfy  the boundary conditions and display physically realistic properties.We anticipate many partial 

differential equations in classical form can be solved in fractional form for example wave equation , 

Schrodinger equation and Burger equation 
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 الملخص :

في هذه الورقة تمت دراسة معادلة انتشار الحرارة باستخدام التفاضل الكسري وكان التركيز على البارومترات  

وحصلنا على الحل التحليلي باستخدام طرق لابلاس  و فوريير  وقد كان هذا الحل متقاربا للحل الكلاسيكي   β=  1⁄2 و∝

 )حل انتشار الموجة الحرارية(.

 فورييه وتحويل لابلاس - معادله الحرارة  - التفاضل والتكامل الجزئي الكلمات المفتاحية : 

  


