مـجلـة العلوم الطبيعـة

و الحياتية والتطبيقية
العدد الأول - المجلد الأول
مارس 2017
ISSN: 2518-5780

Symmetric and Permutation Generating Sets of $S_{28 k+r}$ and $A_{28 k+r}$ of Degree $28 k+r$ Using $\operatorname{PSL}(2,27)$

Nouf M. Al-Raddadi and Ibrahim R. Al-Amri

الكلمـات المفتاحية: زمرة التماثل، الزمرة الخطية $\operatorname{PSL}(2,27)$
Abstract: In this paper, we aimed to use $P S L(2,27)$ to generate the symmetric group $S_{28 k+r}$ and the alternating group $A_{28 k+r \text {. we have given symmetric and permutational generating sets of }} S_{28 k+r \text { and }} A_{28 k+r \text { of degree }} 28 k+r$ using the projective linear group $P S L(2,27)$ and an element of order $2 k+r$ in $S_{28 k+r}$ and $A_{28 k+r}$ for all integers $k \geq 1$. We also have shown that $S_{28 k+r}$ and $A_{28 k+r}$ can be symmetrically generated using some symmetric generating sets.

Keywords: the symmetric group, $\operatorname{PSL}(2,27)$.

1.INTRODUCTION

The projective special linear group $P S L(2,27)$ is group of non-singular 2×2 matric over F_{27}. The $\operatorname{PSL}(2,27)$ of order 9828 is one of the well know simple groups. It contains 16 conjugacy classes. It also contains four maximal subgroups of orders $351,28,26$ and 12.
$\operatorname{PSL}(2,27)$ can be generated using two permutations of orders 13 and 3 as follows;
$\operatorname{PSL}(2,27)=\langle(3,27,25,23,21,19,17,16,14,12,10,8,6)(4,15,13,11,9,7,5$, $28,26,24,22,20,18),(1,2,4)(5,8,24)(6,21,10)(7,16,15)(9,25,28)(11,13,14)$ $(12,27,23)(17,26,18)(19,20,22)\rangle$.
$\operatorname{PSL}(2,27)$ can be finitely presented as follows [1,2]
$\operatorname{PSL}(2,27)=\left\langle x, y, t: x^{3}=y^{13}=t^{2}=(y t)^{2}=(x t)^{3}=1, y^{-3} x y^{3}=x y^{-1} x y=y^{-1} x y x\right\rangle$.
In 1998, Al-Amri,[3,4], has shown $A_{k n+1}$ and $S_{k n+1}$ can be generated symmetric generating and symmetrically generating using S_{n} and an element of order k.In 1995, Al-Amri and Hammas [1], have shown that $A_{k n+1}$ and $S_{k n+1}$ can be generating using S_{n} and an element of order $k+1$ for all integers $n \geq 2$ and $k \geq 2$. Also, they have shown that $A_{k n+1}$ and $S_{k n+1}$ can be generated symmetrically using n elements each of order $k+1$. Al-Amri, Al-Shehri, Ashour and Al-Muhaimeed,([5-9])have studied different types of symmetric and permutational generating set of various groups using different projentors.
In this paper, we will show that $S_{28 k+r}$ and $A_{28 k+r}$ can be generated using the $\operatorname{PSL}(2,27)$.
In this paper we generate the symmetric group $S_{28 k+r}$ and the alternating group $A_{28 k+r}$ using the projective special linear group $\operatorname{PSL}(2,27)$
We have generated the symmetric group $S_{28 k+r}$ and the alternating group $A_{28 k+r}$ using the simple group $P S L(2,27)$. We will introduce some definitions and known results for areas of group theory to be used in this paper. Also, many new results have been found to get large groups from small ones. In 2009, Al-Shehri,[4,10], has used the Mathieu groups $M_{9}, M_{10}, M_{12 \text { to get }} S_{k n+1}$ and $A_{k n+1}$.Also,Shafee,[11],has used the wreath product of group $\operatorname{PSL}(2,13) w r \quad \operatorname{PSL}(2,11)$ by some other groups. Samman,[14], has used the projective special linear group $\operatorname{PSL}(2,19)$ to get $S_{20 k+r \text { and }} A_{20 k+r}$

2. PRELIMINARY RESULTS

Definition 2.1. [14] The general linear group $G L_{n}(q)$ consists of all the $n \times n$ matrices that have nonzero determinant over the field F_{q} with q-elements. The special linear group $S L_{n}(q)$ is the subgroup of $G L_{n}(q)$ which consists of all matrices of determinant one. The projective general linear group $P G L_{n}(q)$ and projective special linear group $P S L_{n}(q)$ are the groups obtained from $G L_{n}(q)$ and $S L_{n}(q)$. The projective special linear group $P S L_{n}(q)$ is also denoted by $L_{n}(q)$. The orders of these groups are:

$$
\begin{aligned}
& \left|G L_{n}(q)\right|=(q-1) N, \quad\left|S L_{n}(q)\right|=\left|P G L_{n}(q)\right|=N, \\
& \left|P S L_{n}(q)\right|=\left|L_{n}(q)\right|=\frac{N}{d}, \\
& \text { where } N=q^{\frac{1}{2} n(n-1)}\left(q^{n}-1\right)\left(q^{n-1}-1\right) \ldots\left(q^{2}-1\right) \\
& \text { and } d=(q-1, n) .
\end{aligned}
$$

Definition 2.2.[9] A group G is said to be simple if G has no proper normal subgroup ; that is, G has no normal subgroups except $\{i d\}$ and G.
Definition 2.3.[13] If X is a nonempty set, the symmetric group on X, denoted by S_{X}, is the group whose element are the permutations of X and whose binary operation is composition of functions.
Of particular interest is the special case when X is finite . If $X=\{1,2,3, \ldots, n\}$, we write S_{n} instead of S_{X}, and we call S_{n} the symmetric group of degree n, or the symmetric group on n letters, of order n !

Definition 2.4.[11] If X is a nonempty set. A subgroup G of the symmetric group S_{X} is called a permutation group on X. The degree of the permutation group is the cardinality of X
Definition 2.5.[12] Two elements a and b are said to be conjugate in G if there is some $g \in G$ such that $b=g^{-1} a g$.
Theorem 2.1. [2] Let $1 \leq a \neq b<n$ be any integer. Let n be an odd integer and let G be the group generated by the n -cycle $(1,2, \ldots, n)$ and 3 -cycle $(\mathrm{n}, \mathrm{a}, \mathrm{b})$. If the $\mathrm{hcf}(\mathrm{n}, \mathrm{a}, \mathrm{b})=1$, then $\mathrm{G}=A_{n}$.
Theorem 2.2. [2] Let G be the group generated by the n-cycle $(1,2, \ldots, n)$ and the involution ($n, a)(i$,j) for any i and j. Let $n \geq 9$ be an odd integer then $G \cong A_{n}$.
Theorem 2.3. [2] Let $1<i \neq j<n$. Let $n \geq 8$ be an even integer. Let G be the group generated by the n-cycle $(1,2, \ldots, n)$ and the involution $(\mathrm{n}, 1)(\mathrm{i}, \mathrm{j})$. If $(n, 1)(i, j) \neq(n, 1)\left(\frac{n}{2}, \frac{n}{2}+1\right)$ then $G \cong S_{n}$.
3. Generating the Symmetric Groups $S_{28 k+r}$ and the Alternating Groups $A_{28 k+r}$ Using $\operatorname{PSL}(2,27)$
Theorem 3.1. $P S L(2,27)$ can be generated using two elements, the first is of order 14 and the second is of order 13.
Proof:Let $H=\langle\alpha, \beta\rangle$,where
$\alpha_{=(1,26,28,13,15,2,10,5,9,17,23,7,11,6)(3,20,12,18,4,16,27,19,8,21,14,25,24,22) \text {, }, ~}^{\text {, }}$ which is the product of two cycles each of order 14 and $\beta_{=(1,2,23,25,16,24,5,6,7,13,21,12,14)(3,22,10,20,18,4,27,15,8,19,26,11,17) \text {, }}$
which is the product of two cycles each of order 13. We claim that H is $\operatorname{PSL}(2,27)$. To show this, let

$$
\begin{gathered}
\eta_{=} \beta \alpha_{=(1,10,12,25,27,2,7,15,21,18,16,22,5)(4,19,28}, \\
13,14,26,6,11,23,24,9,17,20),
\end{gathered}
$$

which is the product of two cycles each of order 13 . Let

$$
\begin{aligned}
\eta_{1}=\eta_{=}^{4} & (1,27,21,5,25,15,22,12,7,16,10,2,18)(4,14,23,20,13, \\
& 11,17,28,6,9,19,26,24),
\end{aligned}
$$

which is the product of two cycles each of order 13. Conjugating η by $\alpha^{-4} \beta^{6}$ we get

$$
\begin{aligned}
\eta_{2}= & (1,17,2,4,9,8,22,3,6,13,27,26,18)(5,21,15,19 \\
& 25,23,7,28,12,10,16,20,14) .
\end{aligned}
$$

Hence, we get the element

$$
x=\eta_{1} \eta_{2}^{3}=(3,27,25,23,21,19,17,16,14,12,10,8,6)(4
$$

$15,13,11,9,7,5,28,26,24,22,20,18) \in H$, which is the first generator of $\operatorname{PSL}(2,27)$

Let:

$$
\begin{gathered}
\mu_{1=}\left(\alpha^{9}\right)^{\beta}=(1,24,22,12,27,10,19,4,5,26,14,16,15,18)(2,3,8, \\
7,9,21,17,6,28,13,20,11,25,23),
\end{gathered}
$$

which is the product of two cycles each of order 14,

$$
\begin{gathered}
\mu_{2=}(\alpha \beta)^{2}=(1,7,25,9,18,26,21,11,17,5,3,27,28)(2,14,15, \\
13,12,24,6,20,16,23,8,4,10),
\end{gathered}
$$

which is the product of two cycles each of order 13,

$$
\begin{aligned}
\mu_{3=} \beta^{2}= & (1,23,16,5,7,21,14,2,25,24,6,13,12)(3,10,18,27,8, \\
& 26,17,22,20,4,15,19,11),
\end{aligned}
$$

which is the product of two cycles each of order 13,

$$
\begin{gathered}
\mu_{4=} \alpha_{=(1,28,15,10,9,23,11)(2,5,17,7,6,26,13)(3,12,4,27,} \\
8,14,24)(16,19,21,25,22,20,18),
\end{gathered}
$$

which is the product of four cycles each of order 7 and

$$
\mu_{5=}\left(\beta^{-6}\right)^{\alpha^{3}}=(1,6,10,3,24,8,16,20,22,23,13,28,9)(4,15,27,
$$

$$
26,19,11,21,18,5,12,25,17,14)
$$

which is the product of two cycles each of order 13 . Hence, we get the element

$$
\begin{aligned}
y_{=} \prod_{i=1}^{5} \mu_{i}=(1,2,4)(5,8,24)(6,21,10)(7,16,15)(9,25, \\
28)(11,13,14)(12,27,23)(17,26,18)(19,20,22) \in H
\end{aligned}
$$

which is the second generator of $\operatorname{PSL}(2,27)$.Therefore,
$G=\langle x, y\rangle=\operatorname{PSL}(2,27) \subseteq H$
On the other hand, let:
$\sigma=x y=(1,2,4,7,8,21,20,17,15,14,27,28,18)(3,23,10,24,19,26,5,9,16,11,25,12,6)$,
which is the product of two cycles each of order 13,
$\sigma_{1}=(x y)^{5}=(1,21,27,4,17,18,8,14,2,20,28,7,15)(3,26,25,10,9,6,19,11,23,5,12,24,16)$,
which is the product of two cycles each of order 13,
$\sigma_{2}=y^{2}=(1,4,2)(5,24,8)(6,10,21)(7,15,16)(9,28,25)(11,14,13)(12,23,27)(17,18,26)(19,22,20)$,
which is the product of nine cycles each of order 3 ,
$\sigma_{3}=y^{x^{5}}={ }_{(1,2,7)(3,26,28)(4,9,8)(5,22,6)(10,11,13)(12,25,21)(14,27,17)(15,20,23)(16,18,24) \text {, }, ~(, ~}^{\text {, }}$, which is the product of nine cycles each of order 3 ,
$\sigma_{4}=x^{y}=(1,7,14,13,25,16,8,9,18,5,19,22,17)(3,23,28,12,10,20,26,15,11,27,6,24,21)$,
which is the product of two cycles each of order 13, conjugating σ_{4} by $x y$ we get
$\sigma_{5}=(1,9,26,22,15,2,8,27,13,12,11,21,16)(3,19,20,23,10,18,6,24,17,5,14,25,28)$,
which is the product of two cycles each of order 13 and
$\sigma_{6}=\left(\left(\left(x^{y}\right)^{x y} x\right)^{18} x^{y}\right)^{5}=(1,22,4,18,11,17,6)(2,25,14,20,13,15,9)(3,5,26,27,8,28,23)(7,19,10$,
$21,12,24,16)$
which is the product of four cycles each of order 7 . Hence, we get the element
$\alpha=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{6}=(1,26,28,13,15,2,10,5,9,17,23,7,11,6)(3,20,12,18,4,16,27,19,8,21,14,25$,
$24,22) \in G=\langle x, y\rangle$.
Let:
$\delta_{1}=(x y)^{10}={ }_{(1,27,17,8,2,28,15,21,4,18,14,20,7)(3,25,9,19,23,12,16,26,10,6,11,5,24), ~}^{2}$,
which is the product of two cycles each of order 13,
$\delta_{2}=y^{2}=(1,4,2)(5,24,8)(6,10,21)(7,15,16)(9,28,25)(11,14,13)(12,23,27)(17,18,26)(19,22,20)$,
which is the product of nine cycles each of order 3 ,
$\delta_{3}=x^{y}=\sigma_{4}=x^{y}{ }_{(}(1,7,14,13,25,16,8,9,18,5,19,22,17)(3,23,28,12,10,20,26,15,11,27,6,24$, 21),
which is the product of two cycles each of order 13 and
$\delta_{4}=\left(x^{y^{2}} y^{x y} y^{2} x^{17}\right)^{7}=(1,24,8,28,25,4,13,7,19,3,11,18,22)(2,12,16,23,5,15,27,21,17,9,6,26$, 10)
which is the product of two cycles each of order 13 . we get the element

$$
\beta=\prod_{i=1}^{4} \delta_{i}
$$

$=(1,2,23,25,16,24,5,6,7,13,21,12,14)(3,22,10,20,18,4,27,15,8,19,26,11,17)$
$\in G=\langle x, y\rangle$,
and therefore

$$
H=\langle\alpha, \beta\rangle \subseteq G=\langle x, y\rangle
$$

Hence,

$$
H=\langle\alpha, \beta\rangle=G=\langle x, y\rangle=\operatorname{PSL}(2,27)
$$

${ }_{\text {Let }} \theta: H \rightarrow\langle A, B\rangle$,where,
$A=(1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)$ and $B=(1,6,11,26,20,27,8,14,12,4,24,17,25)(2,13,10,15,28,7,16,18,19,21,5,23,22)$ be the mapping which takes the point in the $i_{i}^{t h}$ position of α into i in A. It is not difficult to show that θ is isomorphism and therefore $P S L(2,27) \cong\langle A, B\rangle$. \diamond

Theorem 3.2. $S_{28 k+r \text { and }} A_{28 k+r \text { can be generated using }} \operatorname{PSL}(2,27)$ and an element of order $2 k+r$ in $S_{28 k+r \text { and }} A_{28 k+r}$ for all integers $k \geq 1$.
Proof:Let $G=\langle x, y, t\rangle$, where

$$
\begin{aligned}
x & =(1,2,3, \ldots, 14)(15,16,17, \ldots, 28) \ldots(28(k-1)+1,28(k-1)+2, \\
& 28(k-1)+3, \ldots, 28(k-1)+14)(28(k-1)+15,28(k-1)+16,28(k- \\
& 1)+17, \ldots, 28 k),
\end{aligned}
$$

which is the product of $2 k$ cycles each of order 14,

$$
\begin{aligned}
& y= \\
&(1,6,11,26,20,27,8,14,12,4,24,17,25)(2,13,10,15,28,7, \\
&16,18,19,21,5,23,22) \ldots(28(k-1)+1,28(k-1)+6,28(k-1)+ \\
&11, \ldots, 28(k-1)+25)(28(k-1)+2,28(k-1)+13,28(k-1)+10, \ldots \\
&, 28(k-1)+22),
\end{aligned}
$$

which is the product of $2 k$ cycles each of order 13 and

$$
t=(14,28, \ldots, 28(k-1)+14,28 k, 28 k+1, \ldots, 28 k+ヶ),
$$

which is a cycle of order $2 k+r$. Let $\sigma=t x$

$$
\sigma=(1,2,3,4,5,6, \ldots, 28 k, 28 k+1,28 k+2, \ldots, 28 k+(r-1), 28 k+r)
$$

which is a cycle of order $28 k+r$.We have the following two cases:
Case (1): If r is an odd integer. For any $k \geq 1, \quad$ if $r=1$ then;
$\tau=\left[t^{x}, t^{x^{2}}\right]^{-1}=(1,2,28 k+1)$.
Since $h c f(1,2,28 k+1)=1$, then by theorem 2.1 we get
$H=\langle\sigma, \tau\rangle \cong A_{28 k+r}$.
While if $r>1$ then;
$\delta_{1=}\left[t, t^{x}\right]_{=(1,14)(28 k+1,28 k+2) .}$
Since σ is an even permutation, then by theorem 2.2
$H=\left\langle\sigma, \delta_{1}\right\rangle \cong A_{28 k+r}$.
Case (2): If r is an even integer . For any $k \geq 1$, then;
$\delta_{2=}\left[t, t^{x}\right]_{=(1,14)(28 k+1,28 k+2) .}$
Since σ is an odd permutation, then by theorem 2.3
$H=\left\langle\sigma, \delta_{2}\right\rangle \cong S_{28 k+r .}$.
Theorem 3.3.Let ${ }^{y}$ and ${ }^{t}$ be the permutations which have been described in theorem 3.2. Let $G=\langle y, t\rangle$. Then $G \cong S_{26 k+r}$ or $A_{26 k+r}$ for all integers.
Proof: Let $\sigma_{=} t y$, it is not difficult to show that
$\sigma_{=(1,6,11,26,20,27,8,14,7,16,18,19,21,5,23,22,2,13,10,15,28,28(k-2)+12,28(k-2)+4,28(~}^{2}$ $k-2)+24,28(k-2)+17,28(k-2)+25,28(k-2)+1,28(k-2)+6,28(k-2)+11,28(k-2)+26,28(k-$ $2)+20, \quad 28(k-2)+27, \quad 28(k-2)+8, \quad 28(k-2)+14, \quad 28(k-2)+7,28(k-2)+16,28(k-2)+18,28(k-$ 2) $+19,28(k-2)+21,28(k-2)+5,28(k-2)+23,28(k-2)+22,28(k-2)+2,28(k-2)+13,28(k-2)+10$, $28(k-2)+15,28(k-2)+28,28(k-3)+12,28(k-3)+4,28(k-3)+24,28(k-3)+17,28(k-3)+25,28(k-$ 3)+1,28($k-3)+6,28(k-3)+11,28(k-3)+26,28(k-3)+20,28(k-3)+27,28(k-3)+8,28(k-3)+14,28($ $k-3)+7,28(k-3)+16,28(k-3)+18,28(k-3)+19,28(k-3)+21,28(k-3)+5,28(k-3)+23,28(k-3)+22$, $28(k-3)+2,28(k-3)+13,28(k-3)+10,28(k-3)+15,28(k-3)+28, \ldots, 28 k, 28 k+1, \ldots, 28 k+r)$, which is a cycle of order $26 k+r$. We have the following two cases:

Case (1): If r is an odd integer. For any $k \geq 1$, if $r=1$, then;
$\tau_{1=}\left[t, t^{y}\right]^{y}=(4,12,28 k+1)$.
Let $H_{1} \cong\left\langle\sigma, \tau_{1}\right\rangle$.Let
$\theta: H_{1} \rightarrow\langle(1,2, \ldots, 26 k+r),(26 k-2,26 k-3,26 k-4)\rangle$
be the mapping which has been described in theorem 3.1. Under this mapping and by theorem 2.1 we get $H_{1}=\left\langle\sigma, \tau_{1}\right\rangle \cong A_{26 k+1}$.

While if $r>1$ then;
$\tau_{2}=\left[t^{y}, t^{y^{2}}\right]={ }_{(4,12)(28 k+1,28 k+2) .}$
Let $H_{2} \cong\left\langle\sigma, \tau_{2}\right\rangle$. Let
$\theta: H_{2} \rightarrow\langle(1,2, \ldots, 26 k+r),(25 k-1,25 k)(25 k+(r-1), 25 k+r)\rangle$ be the be the mapping which has been described in theorem 3.2. Under this mapping and by theorem 2.2 we get $H_{2}=\left\langle\sigma, \tau_{2}\right\rangle \cong A_{26 k+r}$.
Case (2): If r is an even integer . For any $k \geq 1$, then;
$\tau_{3}=\left[t^{y}, t^{y^{2}}\right]=\underset{(12,14)(28 k+1,28 k+2) .}{ }$
Let $H_{3} \cong\left\langle\sigma, \tau_{3}\right\rangle$. By theorem 2.3 it is not difficult to show that:
$\left.H_{3}=\left\langle\sigma, \tau_{3}\right\rangle \cong S_{26 k+r .}.\right\rangle$

4. Symmetric Generating Set of $S_{28 k+r}$ and $A_{28 k+r}$:

Theorem 4.1. $S_{28 k+r \text { and }} A_{28 k+r \text { can be symmetrically generated }}$ using the symmetric generating set $\Gamma_{=}\left\{t_{0}, t_{1}, t_{2}, \ldots, t_{17}\right\}$, where $t_{0}=t$ and $t_{i}=t^{x^{i}}$ for all integers ${ }_{1} \leq i \leq 17$.
Proof: Let x been the element which has been described in theorem 3.2.
Let:

$$
\begin{aligned}
& t_{0}=t=(14,28, \ldots, 28(k-1)+14,28 k, 28 k+1, \ldots, 28 k+r), \\
& t_{1}=t^{x^{1}}=(1,15, \ldots, 28(k-1)+1,28(k-1)+15,28 k+1, \ldots, 28 k+r), \\
& t_{2}=t^{x^{2}}={ }_{(2,16, \ldots, 28(k-1)+2,28(k-1)+16,28 k+1, \ldots, 28 k+r),},
\end{aligned}
$$

and
$t_{17}=t^{x^{17}}={ }_{(17,31, \ldots, 28(k-1)+3,28(k-1)+17,28 k+1, \ldots, 28 k+r) .}$
Let $H=\langle\Gamma\rangle$. We claim that $H \cong S_{28 k+r \text { or }} A_{28 k+r \text { depending on whether } r}$ is an odd or an even integer respectively. To show this, consider the element;
$\alpha=\prod_{i=1}^{17} t^{x^{i}}$.
It is not difficult to show that,
$\alpha=(1,15, \ldots, 28(k-1)+1,28(k-1)+15,2,16,28(k-1)+2,28(k-1)+16,3,17, \ldots, 28(k-1)+3,28(k-$ 1) $+17,4,18, \ldots, 28(k-1)+4,28(k-1)+18,5,19, \ldots, 28(k-1)+5,28(k-1)+19,6,20, \ldots, 28(k-1)+6,28($ $\left.k_{-1}\right)+20,7,21, \ldots, 28(k-1)+7,28(k-1)+21,8,22, \ldots, 28(k-1)+8,28(k-1)+22,9,23, \ldots, 28(k-1)+9$, $28(k-1)+23,10,24, \ldots, 28(k-1)+$
10, 28($k-1)+24,11,25, \ldots, 28(k-1)+12,28(k-1)+25,12,26, \ldots, 28($
$\left.k_{-1}\right)+12,28\left(k_{-1}\right)+26, \ldots, 13,27, \ldots, 28(k-1)+13,28(k-1)+27,14,28,28(k-1)+14,28 k, 28 k+1, \ldots$, $28 k+r$),
which is a cycle of order $28 k+r$. Now, if $r=1$, then;
$\tau_{=}\left[t_{1}, t_{2}\right]^{-1}=(1,2,28 k+1)$.
Since $h c f(1,2,28 k+1)=1$, then by theorem 2.1. we get
$H=\langle\sigma, \tau\rangle \cong A_{28 k+r}$.
While, if $r>1$ is any integer, then;
$\delta=\left[t_{1}, t_{2}\right]_{=(1,2)(28 k+1,28 k+2)}$.
Hence, If r is an even integer, then; by theorem 2.3 we get
$H=\langle\sigma, \delta\rangle \cong S_{28 k+r}$.
While if r is an odd integer, then; by theorem 2.2 we get
$H=\langle\sigma, \delta\rangle \cong A_{28 k+r .} .0$
Theorem 4.2. Let $\Gamma_{=}\left\{t_{0}, t_{1}, t_{2}, \ldots, t_{13}\right\}$ be the symmetric generating set of the groups $S_{28 k+r}$ and $A_{28 k+r}$ which have been described in the previous theorem. If we remove m-elements of the set Γ for all $1 \leq m \leq 12$ then the resulting set generates $S_{(28-2 m) k+r}$ and $A_{(28-2 m) k+r}$. If we remove 13
elements of the set Γ then the resulting set generates $C_{2 k+r}$, depending on whether r is an odd or an even integer respectively.
Proof: : Let $\Gamma_{=}\left\{t_{0}, t_{1}, t_{2}, \ldots, t_{13}\right\}$. Let $\Gamma_{1}=\left\{t_{1}\right\}$. It is clear that $\left\langle\Gamma_{1}\right\rangle \cong C_{2 k+r}$, which is a cycle of order $2 k+r$. Let $\Gamma_{2}=\left\{t_{1}, t_{2}\right\}$. Let $H=\left\langle\Gamma_{2}\right\rangle$. We claim that $H \cong S_{4 k+r \text { or }} A_{4 k+r \text {. To show }}$ this, let $\alpha=t_{1} t_{2}^{-1} t_{1}$. It is not difficult to show that,

$$
\begin{aligned}
\alpha= & (1,28(k-1)+1,28 k+1,28 k+2, \ldots, 28 k+r, 15, \ldots, 28(k-1)+15, \\
& 28(k-1)+16,28(k-1)+2,16,2),
\end{aligned}
$$

which is a cycle of order $4 k+r$. Now, if $r=1$, then;
$\left.\tau_{=}\left[t_{1}, t_{2}\right]^{-1}={ }_{(1,2,28} k+1\right)$.
Let $H_{1}=\langle\alpha, \tau\rangle$. By theorem 2.1, It is not difficult to show that $H_{1} \cong A_{4 k+r}$. Since t_{1} and t_{2} are even permutation and since H acts on $4 k+r_{\text {points, then }} H \cong H_{1} \cong A_{4 k+r}$.
While, if $r>1$ is any integer, then;
$\left.\delta=\left[t_{1}, t_{2}\right]_{=(1,2)(28} k+1,28 k+2\right)$.
Let $H_{2}=\langle\alpha, \delta\rangle$. Then, If r is an even integer, then by theorem 2.3,
$H_{2} \cong S_{4 k+r}$. While if r is an odd integer, then by theorem 2.2, $H_{2} \cong A_{4 k+r}$. Since $H_{\text {acts on }}$ $4 k+r_{\text {points, then }} H \cong S_{4 k+r \text { or }} A_{4 k+r}$
depending on whether r is an odd or an even integer respectively. Therefore, The rest of the proof goes in the same way. \diamond

5. SUMMARY:

In this paper we have given symmetric and permutational generating sets of $S_{28 k+r}$ and $A_{28 k+r}$ of degree $28 k+r$ using the projective linear group $P S L(2,27)$ and an element of order $2 k+r$ in $S_{28 k+r \text { and }} A_{28 k+r \text { for all integers } k \geq 1 \text {. We also have shown that }} S_{28 k+r \text { and }} A_{28 k+r \text { can be }}$ symmetrically generated using some symmetric generating sets.

REFERENCES

[1] Al-Amri I.R. and Hammas, A.M. (1995). "Symmetric generating set of Groups $A_{k n+1}$ and $S_{k n+1 \text { ". }}$. JKAU: Edu.Sci.,7, P.P. 111-115.

```
ج<
```

[2] Al-Amri, I.R. (1992). "Computational methods in permutation groups". Ph.D. Thesis, University of St. Andrews.
[3]Al-Amri, I. R. "Symmetric generating set of the groups $A_{k n+1}$ and $S_{k n+1}$ using S_{n} and an element of order k", Internet. J. Math . \& Math. Sci.Vol. 21 No. 3(1998)489-492 .
[4] Al-Shehri,H.A; "Symmetric generating set of the groups $S_{k n+1}$ and $A_{k n+1}$ Using Some Mathieu Groups", Master Thesis ,Princess Nora Bint Abdul Rahman University for Girls, College of Education in Riyadh (2009).
[5]Al-Muhaimeed, A.A \&Al-Amri, I.R.; "Symmetric and permutational generating sets of $S_{14 k+1}$ and $A_{14 k+1}$ using $L_{2}(13)_{\text {", Internet. Far East Journal of Math. Sci. (FJMS). 40(2), pp. 215-224. }}$
[6] Al-Shehri,H.A\&AI-Amri, I.R.;"Symmetric and permutational generating sets of S9k+1 and A9k+1 using the wreath product M9 wr Ck", Far East J. Mathe. Sci. (FJMS) vol. 31 no. 2 (2008).
[7]Ashour,R;Al-Syadi,B\&Al-Amri,I; "Symmetric and permutational generating sets of $S_{13 k+1}$ and $A_{13 k+1}$ of Degree 13k+r Using PSL(3,3)",Journal of King Abdulaziz University Science 25(1),pp.77-82(2013).
[8]Ashour,R;Samman,E\&AI-Amri,l;"On the Wreath Product of Groups Containing PSL $(2,19)$ ",Journal for Algebra and Number Theory Academia,vol.2,no2,P.P.63-115.
[9]Bhattacharya,P.B.\& Jain, S.K \& Nagpaul, S. R; Basic Abstract Algebra, Cambridge University Press, (1986, 1994)
[10] Conway, J.H.; Curtis, R.T.; Norton, S.P.; Parker, R.A. and Wilson, R.A. (1985). Atlas of finite simple groups. Clarendon press, Oxford University press.
[11] Shafee,B.H;"On the Wreath Product of Group PSL $(2,13)$ wr PSL $(2,11)$ by Some Other Groups".International Journal of Algebra(HIKARI Ltd),Vol.7,2013.no.17,817-824.
[12]Hammas, A.M; "Symmetric presentations of some finite groups". Ph.D. Thesis, University of Birmingham,(1991).
[13]Rotman, J.J. ; An Introduction To The Theory Of Groups,(Third edition), Allyn and Bacon, Inc., Boston,(1934).
[14]Robinson, D.J.; A course in The Theory Of Groups. Springer-Verlag,New York,(1980).
[15]Samman,E;Ashour,R\&Al-Amri, I.R; "Symmetric and permutational generating sets of $S_{20 k+1}$ and $A_{20 k+1}$ Using the Projective Linear Group PSL(2,19)". Far East Journal of Math. Sci. (FJMS). 1(1), March2011.

