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Abstract: In this paper, we aimed to use to generate the symmetric group 28K+r and the alternating group

A

28K +r | we have given symmetric and permutational generating sets of 28K+1 and = 28K +r of degree 28K +r

S
PSL(2,27) and an element of order 2K +r in

A

S
K 21. We also have shown that — 28K+I and * 28K+r can be symmetrically generated using some symmetric

A
using the projective linear group 28K +1 and = 28K +T for all integers

generating sets.

Keywords: the symmetric group, PSL(2,27)
1.INTRODUCTION
The projective special linear group PSL(2.27) is group of non-singular 2 x 2 matric over I:27 . The

PSL (2,27)

of order 9828 is one of the well know simple groups. It contains 16 conjugacy classes. It also

contains four maximal subgroups of orders 351, 28, 26 and 12.

PSL (2,27)

can be generated using two permutations of orders 13 and 3 as follows;
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PSL(2,27)=((3, 27, 25, 23, 21, 19, 17, 16, 14, 12, 10, 8, 6)(4,15, 13, 11, 9,7,5,
28,26, 24, 22, 20, 18),(1, 2, 4)(5, 8, 24)(6, 21,10)(7, 16, 15)(9, 25, 28)(11, 13, 14)
(12, 27,23)(17, 26, 18)(19,20, 22)).

PSL (2,27)

can be finitely presented as follows [1,2]

PSL(2,27) :<x YL Ex 3=y Bat2o(yt)2 = (xt)3 =1y xy* =xy Xy =y Xxyx >

In 1998, Al-Amri,[3,4], has shown Akn+1 and Skn+1 can be generated symmetric generating and
symmetrically generating using Sh and an element of order k£In 1995, Al-Amri and Hammas [1], have
shown that Axnsa and Sknt can be generating using S and an element of order K +1 for all integers

n>2and kK 22 .Also, they have shown that Akn+1 and S kn+l can be generated symmetrically using N
elements each of order K +1. Al-Amri, Al-Shehri, Ashour and Al-Muhaimeed,([5-9])have studied different
types of symmetric and permutational generating set of various groups using different projentors.

In this paper, we will show that S 28k +r and Adgk +r can be generated using the PSL(2.27),

In this paper we generate the symmetric group Sosar and the alternating groupAZSk +I using the

PSL(2,27)

projective special linear group

We have generated the symmetric group 828k+r and the alternating groupA28k +I using the simple

group PSL(2,27) . We will introduce some definitions and known results for areas of group theory to be

used in this paper. Also, many new results have been found to get large groups from small ones. In 2009,

Al-Shehri,[4,10], has used the Mathieu groups M9, MlO,M12t0 get Sk”+1 and Ak”+1

PSL(2,13) wr PSL(2,11)
Also,Shafee,[11],has used the wreath product of group by some other

groups . Samman,[14], has used the projective special linear group PSL (2,19) to get S 20k +r and AZOk +r

2. PRELIMINARY RESULTS
GL, (@)

. nxn .
consists of all the matrices that have non-

SLn(@)

Definition 2.1. [14] The general linear group

is the subgroup of
PGL, (@)

F
zero determinant over the field 9 with g-elements. The special linear group

GL, (@)

which consists of all matrices of determinant one. The projective general linear group

PSLy (a) GL (@) 4g SLn @) 7

are the groups obtained from

Ln (@)

and projective special linear group

PSL, (@)

projective special linear group is also denoted by . The orders of these groups are:
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[GLy@) [=@-DN  |SLa(@)|=| POLy (@) [=N

| PSL, @) | =] Ln(q)|=';|—

’

1
=n (n-1) _
—q2 (q" -1)(q"?-1)..(q% -1)

where
and d=(q-1n )
Definition 2.2.[9] A group G is said to be simple if G has no proper normal subgroup ; thatis, G has

no normal subgroups except {id} and G,

Definition 2.3.[13] If X is a nonempty set, the symmetric group on X, denoted by Sx , is the group
whose element are the permutations of X and whose binary operation is composition of functions .

X ={1,2,3,...,n}

Of particular interest is the special case when X is finite . If ,we write ~ N instead

S S . .
of “X andwecall ©"N the symmetric group of degree n, or the symmetric group on n letters , of order n!

Definition 2.4.[11] If X is a nonempty set . A subgroup G of the symmetric group Sx is called a

permutation group on X . The degree of the permutation group is the cardinality of X .
eG

Definition 2.5.[12] Two elements a and b are said to be conjugate in G if there is some 9 such that
b=g ~a g .
Theorem 2.1. [2] Let 1<azb<n e any integer . Let N be an odd integer and let G be the group

%2,..,n) and 3- cycle (n, a, b). If the hcf(n,a,b)=1, then G = An .

@2,...,n)

generated by the n-cycle

Theorem 2.2.[2] Let G be the group generated by the r+cycle and the involution (7, a)(/

,j)forany iand j.Let N 29 be an odd integer then G=An

I<i#j<n Let 128 pe an even integer. Let G be the group generated by the

ODED=MDG 2+ g

then n,

Theorem 2.3. [2] Let

@2,...,n)

n-cycle and the involution (n,1)(i, j). If

3. Generating the Symmetric Groups SZBk + and the Alternating Groups A28k +r Using
PSL(2,27)

Theorem 3.1. PSL(2,27)

can be generated using two elements, the first is of order 14 and the second is

of order 13.

H =(a.5)

Proof: Let ,where
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O =(1,26,28,13,15,2,10,5,9,17,23,7,11,6)(3, 20, 12,18, 4,16, 27,19, 8, 21, 14, 25, 24, 22),

which is the product of two cycles each of order 14 and

ﬂ:(1, 2,23,25,16,24,5,6,7,13,21,12,14)(3, 22,10, 20,18, 4, 27,15, 8,19, 26, 11, 17),
H . PSL(2,27)

which is the product of two cycles each of order 13. We claim that . To show this, let

’7::60‘:(1, 10,12, 25,27,2,7,15,21,18,16, 22, 5)(4, 19, 28,
13,14, 26,6,11,23, 24,9, 17, 20),

which is the product of two cycles each of order 13. Let

4
h_n =(1,27,21,5,25,15,22,12,7,16,10, 2,18)(4, 14, 23,20, 13,
11,17,28,6,9,19, 26, 24),

a‘4ﬂ6
which is the product of two cycles each of order 13. Conjugating n by we get

- (1,17,2,4,9,8,22,3,6,13,27,26,18)(5, 21,15, 19,
25,23,7,28,12,10, 16, 20, 14).

Hence, we get the element

iy
X =12 —(3,27,25,23,21,19,17,16,14,12,10, 8, 6)(4,

15,13,11,9,7,5,28,26,24,22,20,18) € H ,which s the first generator of PSL(2,27)

Let:

NS
Hy_(a”) =(1,24,22,12,27,10,19, 4,5, 26,14,16,15,18)(2, 3, 8,
7,9,21,17,6,28,13, 20, 11, 25, 23),

which is the product of two cycles each of order 14,

2
Ha_(af) =(1,7,25,9,18,26,21,11,17,5,3,27,28)(2, 14,15,
13,12, 24,6, 20,16, 23, 8, 4, 10),

which is the product of two cycles each of order 13,

My _ 32
3= :(1,23, 16,5,7,21,14, 2, 25, 24,6, 13, 12)(3, 10,18, 27, 8,
26,17,22, 20,4,15,19,11),

which is the product of two cycles each of order 13,

2
Ha_a®_(1,28,15,10,9,23,11)(2,5,17, 7,6, 26, 13)(3,12, 4, 27,
8,14, 24)(16,19, 21, 25, 22, 20, 18),

which is the product of four cycles each of order 7 and

—6r\a3
Hs = ('B ) =(1,6,10, 3, 24, 8,16, 20, 22, 23,13, 28, 9)(4, 15, 27,
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26,19,11,21,18,5,12, 25,17, 14),
which is the product of two cycles each of order 13. Hence, we get the element
5
y H H;

=1=1 =(1,2,4)(5,8,24)(6,21,10)(7, 16, 15)(9, 25,

28)(11,13,14)(12, 27, 23)(17, 26,18)(19,20,22) € H
which is the second generator of PSL (2’ 27)
G =(x,y)=PSL(2,27)cH

On the other hand, let:

Therefore,

O =XY =(1,2,4,7,8,21,20,17,15,14, 27, 28,18)(3, 23,10, 24,19, 26, 5,9, 16, 11, 25, 12,6),

which is the product of two cycles each of order 13,

— 5 _
o =(xy) ~(1,21,27,4,17,18,8,14, 2,20, 28,7,15)(3, 26, 25,10, 9,6,19, 11, 23, 5,12, 24, 16),

which is the product of two cycles each of order 13,

2

T2=Y " =(1,4,2)(5, 24, 8)(6, 10, 21)(7, 15,16)(9, 28, 25)(11, 14, 13)(12, 23, 27)(17, 18, 26)(19, 22, 20),

which is the product of nine cycles each of order 3,

x5

=Y =(1,2,7)(3,26,28)(4,9,8)(5,22,6)(10,11,13)(12, 25, 21)(14, 27, 17)(15, 20, 23)(16, 18, 24),
which is the product of nine cycles each of order 3,

—yY —
o, =X - (1,7,14,13,25,16,8,9,18,5,19, 22,17)( 3, 23,28,12,10, 20, 26, 15, 11, 27, 6, 24, 21),

which is the product of two cycles each of order 13, conjugating Oy by XY we get

Os = (1,9,26,22,15,2,8,27,13,12,11,21,16)(3, 19, 20, 23,10, 18, 6, 24,17, 5, 14, 25, 28),

which is the product of two cycles each of order 13 and

_ Y \Xy 18, ¥y\5 _
o =(((X")"X)"X7)" =1 22 4 18,11,17,6)(2, 25, 14, 20, 13, 15,9)(3, 5, 26, 27, 8, 28, 23)(7, 19, 10,
21,12,24,16)
which is the product of four cycles each of order 7. Hence, we get the element

& = 01020306 - (1,26, 28,13,15,2,10,5,9,17,23,7,11,6)(3, 20,12, 18, 4,16,27, 19,8,21,14, 25,

24,22) eG=(x,y),

Let:

& =(xy)° =
1 (1, 27,17,8,2,28,15,21,4,18, 14, 20, 7)(3, 25,9,19, 23,12,16, 26,10, 6,11, 5, 24),
which is the product of two cycles each of order 13,

f— 2 f—
%2 =Y =(1,4,2)(5,24,8)(6,10,21)(7, 15, 16)(9, 28, 25)(11, 14, 13)(12, 23, 27)(17, 18, 26)(19, 22, 20),

which is the product of nine cycles each of order 3,
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53:Xy :O'4:Xy =
(1,7,14,13,25,16,8,9,18, 5,19, 22,17)( 3, 23,28,12,10, 20, 26,15,11, 27, 6, 24,

21),
which is the product of two cycles each of order 13 and
_ Y2, Xy, 2y 17\7 _
0y =X YTYXT) =4 94 8 28,25,4,13,7,19,3, 11,18, 22)(2, 12, 16,23, 5,15,27,21,17,9,6, 26,
10)
which is the product of two cycles each of order 13. we get the element
4
p=11s
i1 =(1,2,23,25,16,24,5,6,7,13,21,12,14)(3, 22, 10, 20, 18, 4, 27, 15, 8, 19, 26, 11, 17)
eG=(x,y)

’

H :<a,,8>gG:<X,y>

and therefore .

Hence, H =(a,p)=G :<x,y>:PSL(2,27)’

L 0:H >(A,B)

, where,

A =(1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28) and

B = (1,6,11,26,20,27,8,14,12,4,24,17,25)(2,13,10,15,28,7,16, 18,19, 21,5, 23, 22) be the mapping
which takes the pointin the /'th position of & intoiiin A 1tis not difficult to show that & is isomorphism

PSL(2,27)=(A,B)

and therefore

PSL (2,27)

S A
Theorem 3.2. ©28k+r and * 28K+r can be generated using and an element of order

2K +rin 828k+r and A28k +1 for all integers k >1

Proof: et G= <X Y ’t> ,where

X =(1,2,3,..,14)(15,16,17, .., 28) ... (28(K -1)+1, 28(K -1)+2,

28(K -1)+3, ..., 28(K -1)+14)28(K -1)+15,28(K -1)+16, 28(K -
1+17,..,28K),
which is the product of 2 K cycles each of order 14,

y =(1,6,11,26,20,27,8,14,12,4,24,17,25)(2,13,10,15, 28, 7,
16,18,19,21,5,23,22) .. 28(K -1)+1,28(K -1)+6,28(K - 1)+
11,..,28(K -1)+25) 28(K -1)+2, 28(K -1)+13, 28(K -1)+10, ..
,28(K -1)+22),

which is the product of 2 k cycles each of order 13 and
t (14,28, .., 28(K -1)+14,28K , 28K +1, ., 28K +»,
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which is a cycle of order 2 K+r .Let o =X
0=(1,2,345,6..,28K, 28K +1,28K 2, 28K +(I -1), 28K +T)
which is a cycle of order 28 k +I We have the following two cases :

Case (1): If I isan odd integer . For any k 21, if I =1 then;

]
T- =(1,2, 28K +1).

Since Acf(1,2,28 k +1) =1, then by theorem 2.1 we get
H :<G’7>5A28k+r,

While if T >1then;

t,tX
Op_ [ ]:(1, 14)(28 K +1,28K +2).
Since O isaneven permutation, then by theorem 2.2

H =(0,6)= Ay . .

Case (2):If I isaneven integer . For any k 21, then;

ttX }
52:[ =(1,14)28K +1,28K +2).
Since O isan odd permutation, then by theorem 2. 3

H :<G’52>2828k+r‘<>

Theorem 3.3.Let y and t be the permutations which have been described in theorem 3.2 . Let

G =(y,t) G =S

A
.Then 26K +1 o © 26K 4T for 4| integers.

Proof: et o=ty ,itis not difficult to show that

O=(1,6,11,26,20,27,8,14,7,16, 18,19, 21,5, 23, 22, 2,13, 10,15, 28, 28(K -2)+12, 28(K -2)+4, 28(
K 2)+24, 28(K -2)+17, 28(K -2)+25, 28(K -2)+1, 28(K -2)+6, 28(K -2)+11, 28(K -2)+26, 28(K -
2)+20, 28(K -2)+27, 28(K -2)+8, 28(K -2)+14, 28(K -2)+7, 28(K -2)+16, 28(K -2)+18, 28(K -
2)+19,28(K -2)+21, 28(K -2)+5, 28(K -2)+23.28(K -2)+22, 28(K -2)+2, 28(K -2)+13, 28(K -2)+10,
28(K -2)+15, 28(K -2)+28, 28(K -3)+12, 28(K -3)+4, 28(K -3)+24, 28(K -3)+17, 28(K -3)+25, 28(K -
3)+1,28(K -3)+6,28(K -3)+11,28(K -3)+26,28(K -3)+20,28(K -3)+27, 28(K -3)+8, 28(K -3)+14, 28(
K _3)+7,28(K -3)+16,28(K -3)+18,28(K -3)+19,28(K -3)+21,28(K -3)+5,28(K -3)+23,28(K -3)+22,
28(K -3)+2,28(K -3)+13, 28(K -3)+10, 28(K -3)+15,28(K -3)+28, .., 28K , 28K +1,.., 28K + 1),
whichis a cycle of order 26 K +T . We have the following two cases :

Case (1):1f I isan odd integer . For any K 21, if I =1, then;
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y
le[t’ty ] =(4,12, 28K +1).

Let Hl - <G’ T1> .Let

0:H, —>((L2, ...,26k +r), (26k —2,26k —3,26k —4))

be the mapping which has been described in theorem 3.1. Under this mapping and by theorem 2.1 we get
Hi=(07)= Ay

While if T >1 then;

(4,12)28 K +1,28K +2).

H,=(o,1,)

Let . Let

0:H, —)<(1, 2, ...,26k +r),(25k -1, 25k )(25k +(r —-1), 25k +r)> be the be the mapping which

has been described in theorem 3.2. Under this mapping and by theorem 22 we get
H2:<O-’TZ>;A26k+r.

Case (2):If I is an even integer . For any k 21, then;
2

—_{tY tY _

13—['[ t }—

H3E<O',T3>

(12,14)28K +1,28K +2) .

Let

H3:<6’T3>5826k+r.0

. By theorem 2.3 itis not difficult to show that

4. Symmetric Generating Set of 828|< +r and A28k +r

A
Theorem 4.1. S 28k +r and © 28K +T can be symmetrically generated

_ _gxl
using the symmetric generating set F:{to’tl’tz’""t17},where to =t and ti =t for all integers
11 <97,

Proof-Let X been the element which has been described in theorem 3.2.

Let:
b=t (1428, . 28(K -1)+14, 28K 28K +1.. 28K +
t, =t*"
1 =(1,15, ..., 28(K -1)+1,28(K -1)+15,28K +1, .., 28K + 5,
t,=t*" =
2 2,16,...,28(K -1)+2, 28(K -1)+16,28K +1, .., 28K + 1,
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and

t tX17

177 7,31, 28(K )43, 28(K -1)+17, 28K 41, .., 28K + .

Let H :< F> . We claim that H :SZSK +I or A28k +r depending on whether I is an odd or an even

integer respectively. To show this, consider the element;
17

[t~
a=i-

Itis not difficult to show that,

a=(1,15,...,28(K -1)+1,28(K -1)+15,2, 16, 28(K -1)+2, 28(K -1)+ 16, 3,17, .., 28(K -1)+3, 28(K -
1417, 4,18, ., 28(K -1)+4, 28(K -1)+18, 5,19, .., 28(K -1)+5, 28(K -1)+19, 6, 20, .., 28(K -1)+6, 28(
K -1)+20,7,21, ..., 28(K -1)+7, 28(K -1)+21, 8,22, ..., 28(K -1)+8, 28(K -1)+22,9, 23, ..., 28(K -1)+9,
28(K -1)+23,10, 24, .., 28(K 1)+

10, 28(K -1)+24,11, 25, .., 28(K -1)+12, 28(K -1)+25,12, 26, ..., 28(

K -1)+12,28(K -1)+26, ..., 13,27, .., 28(K -1)+13, 28(K -1)+27,14, 28, 28(K -1)+14,28K , 28K +1, ..
28K 4T,

whichis a cycle of order 28 ksr Now, if I =1,then;

-1
T:[tl’t2] -(1,2, 28K +1).
Since Acf(1, 2,28 K +1) =1, then by theorem 2.1. we get

H = <O-’T> = A28k 4T

While, if T >1is any integer, then;

o Z[tl’tzL (1,2)28K +1,28K +2).

Hence, If I isan even integer, then; by theorem 2. 3 we get

H :<G’5>;S28k+r‘
While if T isanodd integer, then; by theorem 2.2 we get
H :<G’5>;A28k+r‘<>

Theorem 4.2. Let I :{to’tl’tz 1t

A

’t13} be the symmetric generating set of the groups SZBk +r and

28K +1 \which have been described in the previous theorem . If we remove M _elements of the set I for

S(28—2m)k + and A(28—2m)k +r

all 1<m<12 then the resulting set generates an . If we remove 13

N300117 : el o3, €2 7 Raddadi & Al-Amri
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elements of the set I then the resulting set generates 2k +r depending on whether I is an odd or an

even integer respectively.

I

Proof-: Let I :{to ’tl’tz ! ""t13}. Let rl :{ tl}. Itis clear that r1> C2k +r, which is a cycle of

112

S

4K +r or A4k+r . To show

{
order Zk +I | Let Fz :{ tl’tz}. Let H = <F2> . We claim that H

a :t1t2 ltl. Itis not difficult to show that,

this, let
a=1,28(K -1)+1,28K +1,28K +2,.., 28K +T 15, .., 28(K -1)+15,
28(K -1)+16, 28(K -1)+2, 16, 2),

which is a cycle of order 4k +r . Now, if I =1, then;

-1
rltota] = (1,2, 28K +1).

Let Hl - <a’ Z'> .By theorem 2.1, Itis not difficult to show that H1 = A4k +I . Since b and t2 are even
permutation and since H acts on 4Kk +r points, then H = Hl = A4k +r .

While, if I >1isany integer, then;

5:[t1’t2]:(1,2)(28k 11,28K +2).

Let H 2~ <a' 5> .Then, If I isaneven integer, then by theorem 2.3,

H 2 ES‘”( +r While if T is an odd integer, then by theorem 2.2, H 2 = A4k +r . Since H acts on
4k +r points, then H ES4k+r or A4k+r

depending on whether I isan odd or an even integer respectively. Therefore, The rest of the proof goes in

the same way . 0

5. SUMMARY:

S A
In this paper we have given symmetric and permutational generating sets of ~ 28K+r and * 28K+T of

PSL (2,27)

degree 28K +r using the projective linear group and an element of order 2K +TI in

S

A A
28k +r and * 28K+r for all integers K >1 we also have shown that 828k +r and ~ 28K+r can be

symmetrically generated using some symmetric generating sets.
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