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Abstract: The quest for magnetic monopoles has captivated theoretical physicists due to their potential to reshape our 

understanding of electromagnetism. Despite extensive research, definitive mathematical proof of their existence remains 

elusive. This paper presents a rigorous mathematical framework supporting the existence of magnetic monopoles within the 

covariant formulation of classical electromagnetism and special relativity. Utilizing tensor calculus and the covariance form 

of Maxwell's equations, we derive expressions for magnetic charge density and magnetic current density through Lorentz 

transformations. Our approach emphasizes the expansion of tensorial equations, particularly focusing on the covariant 

derivatives of the electromagnetic field tensor and its dual. The results demonstrate the recovery of magnetic charge and 

current densities in Maxwell's equations, providing a theoretical foundation for the existence of magnetic monopoles. A 

magnetic monopole model is introduced, establishing the relationship between the electric field, the monopole’s magnetic 

charge, and their dependence on the observer's relative velocity as a direct consequence of the modified Gauss's law for 

magnetism. This model suggests the existence of dipole bosons—electric or magnetic—which function analogously to the 

Higgs boson. These dipole bosons are proposed to confer mass, charge, and spin to charged particles, whether they are electric 

or magnetic in nature. 

Keywords: Special relativity, Lorentz transformation, Electromagnetic interactions, Particle-theory models,  Magnetic 

monopoles, Higgs boson. 

 

 معادلات ماكسويل تحت تحولات لورنتز:  

 دراسة الظهور التلقائي لكثافات الشحنة والمجال المغناطيس ي
 

 أ. لؤي حسن الزين بشير 

 السودان 

لقد أسرت مسألة وجود أحادية المغناطيس الفيزيائيين النظريين بسبب إمكانياتها في إعادة تشكيل فهمنا للكهرومغناطيسية. على المستخلص:  

أحادية  وجود  يدعم  صارمًا  رياضيًا  إطارًا  البحث  هذا  يقدم  المنال.  بعيد  لوجودها  قاطع  رياض ي  إثبات  يزال  لا  المكثفة،  الأبحاث  من    الرغم 

الصيغة التغايرية للكهرومغناطيسية الكلاسيكية والنظرية النسبية الخاصة. من خلال استخدام حساب الموترات والصيغة المغناطيس ضمن  

ستنتِجت تعبيرات لكثافة الشحنة المغناطيسية وكثافة التيار المغناطيس ي من خلال تحولات لورنتز. يركز 
ُ
نهجنا التغايرية لمعادلات ماكسويل، أ

ظهِر  على فك م
ُ
جموعة من المعادلات الموترية، مع التركيز بشكل خاص على المشتقات التغايرية لموتر المجال الكهرومغناطيس ي وموتره الثنائي. ت

نموذج النتائج استعادة كثافات الشحنة والتيار المغناطيس ي في معادلات ماكسويل، مما يوفر أساسًا نظريًا لوجود أحادية المغناطيس. تم تقديم  

 ادي القطب المغناطيس ي والذي يُحدد العلاقة بين المجال الكهربائي، الشحنة المغناطيسية لأحادي القطب، وأعتمادهما على السرعة النسبيةأح

— كهربائية أو مغناطيسية—للمراقب كنتيجة مباشرة لقانون غاوس المعدل للمغناطيسية. يقترح هذا النموذج وجود بوزونات ثنائية القطب

بشكل   المشحونةتعمل  الجسيمات  تمنح  المقترحة  القطب  الثنائية  البوزونات  هذه  هيغز.  لبوزون  أو —مشابه  كهربائية  كانت  سواء 

 .الكتلة، الشحنة، والغزل — مغناطيسية

حادي القطب المغناطيس ي،   النسبية الخاصة،الكلمـات المفتاحية:  
ُ
تحويلات لورنتز، التفاعلات الكهرومغناطيسية، نماذج نظرية الجسيمات، أ

 بوزون هيغز.
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1. Introduction 

In 1931, physicist Paul Dirac theorized the existence of magnetic monopoles – particles possessing only a single magnetic pole 

(north or south). This groundbreaking concept, while yet to be experimentally proven, has profoundly influenced several areas of physics. 

Dirac demonstrated that the existence of magnetic monopoles could elegantly explain the observed quantization of electric charge (Dirac, 

1931). This pivotal insight propelled the exploration of magnetic monopoles into the realms of quantum field theory, grand unified 

theories (GUTs) that aim to unify the fundamental forces of nature, and the study of the universe's origins (cosmology). Dirac monopoles 

challenged classical electromagnetism by carrying a net magnetic charge. Dirac showed that monopoles could exist without violating 

Maxwell's equations if incorporated into a modified framework. He derived the quantization condition 𝑒𝑔 = 𝑛ℏ𝑐/2, where 𝑒 is the 

elementary electric charge (the smallest unit of electric charge, such as that of an electron), 𝑔 is the magnetic charge of the monopole, 𝑛 

is an integer representing the quantization condition, ℏ is the reduced Planck constant, and 𝑐 is the speed of light in a vacuum (Dirac, 

1931). In his later work, Dirac expanded on this idea by developing a more comprehensive theory that included the interaction of 

magnetic poles with charged particles through the electromagnetic field. He introduced the concept of "strings" attached to magnetic 

poles, which are lines of singularity in the electromagnetic potentials, and showed that the quantization condition 𝑒𝑔 = 𝑛ℏ𝑐/2 must 

hold for the theory to be consistent (Dirac, 1948). 

In the 1970s, ’t Hooft and Polyakov expanded on Dirac’s work by demonstrating that magnetic monopoles naturally arise in 

grand unified theories (GUTs). Their independent discoveries showed that monopoles emerge as topological solitons in non-Abelian 

gauge theories, such as the Georgi-Glashow model, when the symmetry is spontaneously broken (’t Hooft, 1974; Polyakov, 1974). These 

’t Hooft-Polyakov monopoles possess finite mass determined by the symmetry-breaking scale, marking them as stable and theoretically 

significant objects.  GUT monopoles are typically characterized by extremely high masses in the range of 1014– 1016 GeV, which makes 

their detection infeasible in particle colliders. However, recent advancements in extensions of the Standard Model, such as the Born-

Infeld modifications and topological adjustments in the Higgs sector, predict monopoles with much lower masses, in the range of a few 

TeV, thus making them accessible for detection in current and future colliders. 

The study of monopoles advanced further with developments in quantum field theory and supersymmetric (SUSY) 

frameworks. In supersymmetric theories, monopoles often manifest as BPS (Bogomol’nyi-Prasad-Sommerfield) states, characterized by 

their stability and minimal energy configuration (Prasad & Sommerfield, 1975). The Seiberg-Witten solution of 𝒩 = 2 supersymmetric 

Yang-Mills theory offered groundbreaking insights, showing that monopoles could become massless at specific points in the moduli 

space. This dual description recast the theory in terms of magnetic variables and highlighted monopole dynamics' role in non-

perturbative phenomena (Seiberg & Witten, 1994). In 𝒩 = 2 supersymmetric QCD (SQCD), monopoles are central to the confinement 

mechanism, where their condensation confines chromoelectric flux, binding quarks into hadrons. This behavior is analogous to the 

Meissner effect in superconductors, where magnetic flux is confined to vortices (Seiberg & Witten, 1994). These findings underline the 

crucial role of monopoles in understanding confinement and dynamical symmetry breaking (Konishi, 2007). 

Magnetic monopoles also play a significant role in cosmological models. According to GUTs, monopoles would have been 

abundantly produced in the early universe. However, this overproduction, known as the "monopole problem," posed a major challenge 

for cosmology (Preskill, 1979). Inflationary cosmology, introduced by Guth (1981), resolved this issue by proposing a rapid expansion of 

the universe, diluting monopole density to undetectable levels. 

In condensed-matter systems, "magnetic monopoles" refer to emergent quasiparticles that mimic monopole-like behavior, 

observed in materials such as spin ices (e.g., dysprosium titanate). These quasiparticles arise from collective magnetic excitations, forming 

defects analogous to Dirac strings, with ends acting as monopole-like charges (Castelnovo et al., 2008; Morris et al., 2009). Experiments 

have demonstrated "magnetricity," where magnetic charge currents may measure (Giblin et al., 2011), and synthetic monopoles have 

been created in Bose-Einstein condensates (Ray et al., 2014). While not true elementary monopoles, these systems provide insights into 

monopole-like phenomena in quantum materials. 

Experimentally, extensive searches have been conducted for magnetic monopoles in cosmic rays, geological materials, and 

particle accelerators. Early experiments, such as Cabrera’s use of superconducting detectors, set upper bounds on monopole flux 

(Cabrera, 1982). More recent efforts, including the MACRO Collaboration’s cosmic ray studies, further constrained monopole abundance 

(MACRO Collaboration, 2002). High-energy experiments, such as those at CERN’s Large Hadron Collider (LHC), aim to detect monopoles 

directly through particle collisions, but no conclusive evidence has yet been found. Also, advances in quantum sensors, such as 
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Superconducting Quantum Interference Devices (SQUIDs), have greatly improved sensitivity to weak magnetic fields, enhancing 

magnetic monopole searches (Fagaly, 2006). The MoEDAL experiment at CERN employs SQUID magnetometers to analyze aluminum 

trapping volumes for monopoles (Mavromatos & Mitsou, 2020). Scanning SQUID microscopy has also been proposed to detect 

monopoles in spin ice materials due to its high sensitivity (Kirschner et al., 2018). These innovations refine detection limits and improve 

the sensitivity to detect magnetic monopoles. 

Dirac's hypothesis remains central to theoretical physics, explaining electric charge quantization and inspiring research on 

unification and the universe's structure. Monopole discovery would revolutionize our understanding of fundamental forces, with 

implications for quantum gravity, black hole physics, and early universe studies. And this paper seeks to present a rigorous mathematical 

derivation of the Lorentz-transformed Maxwell's equations and to establish, with mathematical certainty, the theoretical existence of 

magnetic charge density (i.e., magnetic monopoles) and magnetic current density, and to introduce a modified theoretical framework 

integrating electromagnetic theory with relativistic mechanics, which can then be approximately reduced to a combination of 

electromagnetic theory and classical mechanics. It incorporated the uniform motion at its two levels, relativistic or nonrelativistic, into 

the body of electromagnetism. 

2. General forms of covariant derivative of the transformed electromagnetic field tensors and stress–energy tensor 

The Lorentz transformation and Maxwell's equations are fundamental components of classical and modern physics, intricately 

linked through the theory of special relativity. The Lorentz transformation, developed by Hendrik Lorentz in the late 19th century, 

provides the mathematical framework for how measurements of space and time by two observers are related when the observers are in 

uniform relative motion (Lorentz, 1904). These transformations were initially motivated by attempts to explain the invariance of 

Maxwell's equations in different inertial reference frames, particularly in the context of the Michelson-Morley experiment (Michelson & 

Morley, 1887), which failed to detect any motion relative to the supposed luminiferous ether. 

Maxwell's equations, formulated by James Clerk Maxwell, describe the behavior of electric and magnetic fields and how they 

propagate and interact with charges and currents (Maxwell, 1865). The equations unify electricity, magnetism, and optics into a single 

theoretical framework, predicting the existence of electromagnetic waves traveling at the speed of light. This remarkable prediction 

highlighted the fundamental nature of light as an electromagnetic phenomenon and raised questions about the underlying principles 

governing space and time. 

The synthesis of Maxwell's equations with the principles of relativity culminated in Albert Einstein's theory of special relativity 

(Einstein, 1905), which discarded the notion of the ether and established that the laws of physics, including the speed of light, are invariant 

in all inertial frames. Einstein demonstrated that the Lorentz transformations naturally arise from the principle of relativity and the 

constancy of the speed of light, fundamentally altering the classical understanding of space and time. 

In the framework of special relativity, Maxwell's equations are elegantly expressed in their covariant form using tensor 

notation. The electromagnetic field is represented by the antisymmetric electromagnetic field tensor 𝐹𝛼𝛽 , which encapsulates the electric 

and magnetic fields into a unified mathematical entity. The tensor transforms consistently under Lorentz transformations, reflecting the 

relativistic nature of electromagnetism. In this formalism, the four Maxwell's equations reduce to two compact tensor equations: 
𝝏

𝝏𝒙𝜶
𝑭𝜶𝜷 = 𝝁𝟎𝑱

𝜷   , 𝐚𝐧𝐝    
𝝏

𝝏𝒙𝜶
𝑮𝜶𝜷 = 𝟎.                                                                                  (1) 

where 𝐽𝛽  is the four-current vector, encompassing charge and current densities and 𝐺𝛼𝛽  is the dual contravariant 

electromagnetic field tensor. These equations not only demonstrate the unification of electric and magnetic fields but also exemplify the 

compatibility of electromagnetism with the principles of relativity. The invariance of 𝐹𝛼𝛽  under Lorentz transformations underscores the 

deep connection between the geometry of spacetime and the dynamics of the electromagnetic field, marking a cornerstone of modern 

theoretical physics. 

Another significant quantity in the field of electromagnetism is the electromagnetic stress-energy tensor, 𝑇𝛼𝛽 , which plays a 

central role in the covariant formulation of electromagnetism, as it encapsulates the energy density, momentum density, and stress (or 

pressure) associated with the electromagnetic field. This tensor is a rank-2 symmetric tensor that serves as the energy-momentum tensor 

for the electromagnetic. Its components describe the distribution of energy, momentum, and stresses of the electromagnetic field in 

spacetime. 
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The transformation laws for the electromagnetic field tensor 𝐹𝛼′𝛽′, its dual tensor 𝐺𝛼′𝛽′ , and the electromagnetic stress-

energy tensor 𝑇𝛼′𝛽′ are fundamental to ensuring the covariance of physical laws in theory of relativity. These tensors represent the 

electric and magnetic fields, their dual relationships, and the energy-momentum properties of the electromagnetic field, respectively. 

Under a Lorentz transformation Λ𝜈
𝜇  , the components of these tensors transform according to the following laws: 

 

𝑭𝜶′𝜷′ = 𝜦  𝜶
𝜶′𝜦  𝜷

𝜷′
𝑭𝜶𝜷, 𝑮𝜶′𝜷′ = 𝜦  𝜶

𝜶′𝜦  𝜷
𝜷′
𝑮𝜶𝜷  , 𝐚𝐧𝐝    𝑻𝜶′𝜷′ = 𝜦  𝜶

𝜶′𝜦  𝜷
𝜷′
𝑻𝜶𝜷.                                   (2) 

 

Here, 𝛬  𝛼𝛼′  represents the Lorentz transformation matrix, which depends on the relative velocity and orientation of the 

reference frames. The electromagnetic field tensor 𝐹𝛼𝛽  encodes the electric field 𝐄 and magnetic field 𝐁, and its transformation reflects 

how these fields mix under changes in an observer's motion. Similarly, the dual tensor 𝐺𝛼𝛽 , defined as 𝐺𝛼𝛽 = 1

2
𝜖𝛼𝛽𝜌𝜎𝐹𝜌𝜎 , represents 

the complementary magnetic and electric field components and transforms analogously. The stress-energy tensor 𝑇𝛼𝛽  encapsulates the 

energy density, momentum density, and stresses of the electromagnetic field. Its transformation law ensures that quantities such as 

energy flux and momentum density remain consistent across inertial frames. These transformation laws arise naturally from the 

principles of Lorentz invariance, ensuring that Maxwell's equations and the energy-momentum relations retain their form across all 

inertial observers, a cornerstone of modern physics. Applying Equations (1) to the transformed tensors (Equations (2)) accompany with 

replacing partial derivative with covariant derivative, yields: 

𝑭𝜶′𝜷′;𝜶′ =
𝝏

𝝏𝒙𝜶′
𝑭𝜶′𝜷′ + 𝜞𝜸′𝜶′

𝜶′  𝑭𝜸′𝜷′ + 𝜞𝜸′𝜶′
𝜷′
 𝑭𝜶′𝜸′,                                                              (3) 

 

and the general form of covariant derivative of the transformed electromagnetic field tensor becomes: 

𝑭𝜶
′𝜷′

;𝜶′ =
𝝏𝒙𝜹

𝝏𝒙𝜶
′

𝝏

𝝏𝒙𝜹
𝜦  𝜶
𝜶′𝜦  𝜷

𝜷′
𝑭𝜶𝜷 +

𝝏𝒙𝝆

𝝏𝒙𝜸′
𝜞𝝆𝜶
𝜶 𝜦  𝜸

𝜸′
𝜦  𝜷
𝜷′
𝑭𝜸𝜷 +

𝝏𝒙𝜶′

𝝏𝒙𝜶

𝝏𝟐𝒙𝜶

𝝏𝒙𝜸′𝝏𝒙𝜶′
𝜦  𝜸
𝜸′
𝜦  𝜷
𝜷′
𝑭𝜸𝜷 +

𝝏𝒙𝜷′

𝝏𝒙𝜷

𝝏𝒙𝝆

𝝏𝒙𝜸′

𝝏𝒙𝝈

𝝏𝒙𝜶′
𝜞𝝆𝝈
𝜷
𝜦  𝜶
𝜶′𝜦  𝜸

𝜸′
𝑭𝜶𝜸 +

𝝏𝒙𝜷′

𝝏𝒙𝜷

𝝏𝟐𝒙𝜷

𝝏𝒙𝜶′𝝏𝒙𝜸′
𝜦  𝜶
𝜶′𝜦  𝜸

𝜸′
𝑭𝜶𝜸                                                                                                  (4) 

 

Similarly, the general forms of covariant derivative of the transformed dual electromagnetic field tensor and the 

electromagnetic stress-energy tensor: 

𝑮𝜶
′𝜷′

;𝜶′ =
𝝏𝒙𝜹

𝝏𝒙𝜶
′

𝝏

𝝏𝒙𝜹
𝜦  𝜶
𝜶′𝜦  𝜷

𝜷′
𝑮𝜶𝜷 +

𝝏𝒙𝝆

𝝏𝒙𝜸
′ 𝜞𝝆𝜶

𝜶 𝜦  𝜸
𝜸′
𝜦  𝜷
𝜷′
𝑮𝜸𝜷 +

𝝏𝒙𝜶
′

𝝏𝒙𝜶

𝝏𝟐𝒙𝜶

𝝏𝒙𝜸
′
𝝏𝒙𝜶

′ 𝜦  𝜸
𝜸′
𝜦  𝜷
𝜷′
𝑮𝜸𝜷 +

𝝏𝒙𝜷
′

𝝏𝒙𝜷

𝝏𝒙𝝆

𝝏𝒙𝜸
′

𝝏𝒙𝝈

𝝏𝒙𝜶
′ 𝜞𝝆𝝈

𝜷
𝜦  𝜶
𝜶′𝜦  𝜸

𝜸′
𝑮𝜶𝜸 +

𝝏𝒙𝜷′

𝝏𝒙𝜷

𝝏𝟐𝒙𝜷

𝝏𝒙𝜶′𝝏𝒙𝜸′
𝜦  𝜶
𝜶′𝜦  𝜸

𝜸′
𝑮𝜶𝜸                                                                                                   (5) 

 

𝑻𝜶
′𝜷′

;𝜶′ =
𝝏𝒙𝜹

𝝏𝒙𝜶
′

𝝏

𝝏𝒙𝜹
𝜦  𝜶
𝜶′𝜦  𝜷

𝜷′
𝑻𝜶𝜷 +

𝝏𝒙𝝆

𝝏𝒙𝜸′
𝜞𝝆𝜶
𝜶 𝜦  𝜸

𝜸′
𝜦  𝜷
𝜷′
𝑻𝜸𝜷 +

𝝏𝒙𝜶′

𝝏𝒙𝜶

𝝏𝟐𝒙𝜶

𝝏𝒙𝜸′𝝏𝒙𝜶′
𝜦  𝜸
𝜸′
𝜦  𝜷
𝜷′
𝑻𝜸𝜷 +

𝝏𝒙𝜷′

𝝏𝒙𝜷

𝝏𝒙𝝆

𝝏𝒙𝜸′

𝝏𝒙𝝈

𝝏𝒙𝜶′
𝜞𝝆𝝈
𝜷
𝜦  𝜶
𝜶′𝜦  𝜸

𝜸′
𝑻𝜶𝜸 +

𝝏𝒙𝜷′

𝝏𝒙𝜷

𝝏𝟐𝒙𝜷

𝝏𝒙𝜶′𝝏𝒙𝜸′
𝜦  𝜶
𝜶′𝜦  𝜸

𝜸′
𝑻𝜶𝜸                                                                                                    (6) 

 

Equations (4) and (5) are the general transformation laws of Maxwell’s equations and Equation (6) is the general 

transformation law of covariant derivative of electromagnetic stress–energy tensor. 

3. Lorentz transformation of Maxwell’s equations in flat spacetime 

Maxwell’s equations form the foundation of classical electromagnetism, describing the interplay between electric and 

magnetic fields and their sources. In flat spacetime, the framework of special relativity, these equations are expressed in a way that 

respects the principles of relativity, ensuring their validity for all observers moving at constant velocities. They explain how electric 

charges generate electric fields, how currents and changing electric fields produce magnetic fields, and how these fields propagate as 

electromagnetic waves, such as light, at the speed of light in a vacuum. In this relativistic context, electric and magnetic fields are 

understood as components of a single electromagnetic field, unified in a way that highlights the deep connection between space and 

time. This formulation is essential for modern physics, influencing everything from quantum electrodynamics to the study of 

electromagnetic waves in various media. Classical Maxwell’s equations are special case of Equations (4) and (5) where all the affinities 

(𝛤𝛾
𝛼𝛽) vanishes due to flatness of spacetime, that is, 

𝝏

𝝏𝒙𝜶′
𝑭𝜶

′𝜷′ =
𝝏𝒙𝜹

𝝏𝒙𝜶
′

𝝏

𝝏𝒙𝜹
𝜦  𝜶
𝜶′𝜦  𝜷

𝜷′
𝑭𝜶𝜷,                                                                                           (7) 
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𝝏

𝝏𝒙𝜶′
𝑮𝜶

′𝜷′ =
𝝏𝒙𝜹

𝝏𝒙𝜶
′

𝝏

𝝏𝒙𝜹
𝜦  𝜶
𝜶′𝜦  𝜷

𝜷′
𝑮𝜶𝜷,                                                                                         (8) 

3.1 Lorentz transformed Gauss’s laws of electricity and of magnetism 

Gauss’s laws are two of the four fundamental equations that constitute Maxwell’s equations, which describe the behavior of 

electric and magnetic fields. Gauss’s law for electricity states that the electric flux through a closed surface is proportional to the total 

charge enclosed within that surface. This law highlights the relationship between electric charges and the electric fields they produce, 

emphasizing that electric field lines originate from positive charges and terminate at negative charges. On the other hand, Gauss’s law for 

magnetism states that the net magnetic flux through any closed surface is zero, reflecting the fact that magnetic monopoles do not exist 

in nature. Instead, magnetic field lines form continuous loops, with no starting or ending points. Together, these laws provide a 

foundational understanding of how electric and magnetic fields behave in the presence of charges and currents, and they are essential 

for analyzing electrostatic and magnetostatic systems. Gauss’s law for electricity can be obtained in a usual way from Equation (7) by 

substituting 𝛽′ = 0, assuming the relative uniform motion 𝑢 between the field inertial frame of reference, 𝑆-frame, and the observer 

inertial frame of reference, 𝑆′-frame, is in the 𝑥-direction, that is, 

𝜕

𝜕𝑥𝛼′
𝐹𝛼

′0 =
𝜕𝑥𝛿

𝜕𝑥𝛼
′

𝜕

𝜕𝑥𝛿
𝛬  𝛼
𝛼′𝛬  𝛽

0 𝐹𝛼𝛽 

(9) 

where: 

(𝛬  𝛼
𝛼′ )𝑢 = (𝛬  𝛽

𝛽′
)
𝑢
=

(

  
 

𝛾𝑢 −𝛾𝑢
𝑢

𝑐
0 0

−𝛾𝑢
𝑢

𝑐
𝛾𝑢 0 0

0 0 1 0
0 0 0 1)

  
 

 

The transformation of partial derivative can be obtained through chain rule; 
𝜕𝑥𝛿

𝜕𝑥𝛼′
𝜕

𝜕𝑥𝛿
, and inverse Lorentz transformation; 

𝑐𝑡 = 𝛾𝑢 (𝑐𝑡′ +
𝑢

𝑐
𝑥′) , 𝑥 = 𝛾𝑢 (𝑥′ +

𝑢

𝑐
𝑐𝑡′) , 𝑦 = 𝑦′, 𝑧 = 𝑧′, where 𝑢 is the relative velocity between frames in the 𝑥-direction, 𝑐 

is the speed of light, and 𝛾𝑢 = (1 −
𝑢2

𝑐2
)
−
1

2
 is the Lorentz factor: 

                                          (
𝜕𝑥0

𝜕𝑥′0
𝜕

𝜕𝑥0
+
𝜕𝑥1

𝜕𝑥′0
𝜕

𝜕𝑥1
+
𝜕𝑥2

𝜕𝑥′0
𝜕

𝜕𝑥2
+
𝜕𝑥3

𝜕𝑥′0
𝜕

𝜕𝑥3
) = 𝛾𝑢 (

𝜕

𝜕𝑐𝑡
+
𝑢

𝑐

𝜕

𝜕𝑥
), 

                                          (
𝜕𝑥0

𝜕𝑥′1
𝜕

𝜕𝑥0
+
𝜕𝑥1

𝜕𝑥′1
𝜕

𝜕𝑥1
+
𝜕𝑥2

𝜕𝑥′1
𝜕

𝜕𝑥2
+
𝜕𝑥3

𝜕𝑥′1
𝜕

𝜕𝑥3
) = 𝛾𝑢 (

𝑢

𝑐

𝜕

𝜕𝑐𝑡
+
𝜕

𝜕𝑥
), 

                                          (
𝜕𝑥0

𝜕𝑥′2
𝜕

𝜕𝑥0
+
𝜕𝑥1

𝜕𝑥′2
𝜕

𝜕𝑥1
+
𝜕𝑥2

𝜕𝑥′2
𝜕

𝜕𝑥2
+
𝜕𝑥3

𝜕𝑥′2
𝜕

𝜕𝑥3
) =

𝜕

𝜕𝑦
  , 

                                           (
𝜕𝑥0

𝜕𝑥′3
𝜕

𝜕𝑥0
+
𝜕𝑥1

𝜕𝑥′3
𝜕

𝜕𝑥1
+
𝜕𝑥2

𝜕𝑥′3
𝜕

𝜕𝑥2
+
𝜕𝑥3

𝜕𝑥′3
𝜕

𝜕𝑥3
) =

𝜕

𝜕𝑧
  . 

(10) 

Expanding the tensor Equation (7) using the electromagnetic field tensors: 

 

(𝐹𝛼
′𝛽′) =

(

 
 

0 −𝐸′𝑥′ 𝑐⁄ −𝐸′𝑦′ 𝑐⁄ −𝐸′𝑧′ 𝑐⁄

𝐸′𝑥′ 𝑐⁄ 0 −𝐵′𝑧′ 𝐵′𝑦′

𝐸′𝑦′ 𝑐⁄ 𝐵′𝑧′ 0 −𝐵′𝑥′

𝐸′𝑧′ 𝑐⁄ −𝐵′𝑦′ 𝐵′𝑥′ 0 )

 
 
    , and     (𝐹𝛼𝛽) =

(

 
 

0 −𝐸𝑥 𝑐⁄ −𝐸𝑦 𝑐⁄ −𝐸𝑧 𝑐⁄

𝐸𝑥 𝑐⁄ 0 −𝐵𝑧 𝐵𝑦
𝐸𝑦 𝑐⁄ 𝐵𝑧 0 −𝐵𝑥
𝐸𝑧 𝑐⁄ −𝐵𝑦 𝐵𝑥 0 )

 
 

 

 

𝜕

𝜕𝑥𝛼
′ 𝐹

𝛼′0 =
𝜕

𝜕𝑥′0
𝐹′
00

+
𝜕

𝜕𝑥′1
𝐹′
10

+
𝜕

𝜕𝑥′2
𝐹′
20

+
𝜕

𝜕𝑥′3
𝐹′
30

=
1

𝑐
𝛁′ ∙ 𝐄′, 
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                   =
𝜕𝑥𝛿

𝜕𝑥𝛼
′

𝜕

𝜕𝑥𝛿
𝛬  𝛼
𝛼′𝛬  𝛽

0 𝐹𝛼𝛽 , 

                   = 𝛾𝑢 (
𝜕

𝜕𝑐𝑡
+
𝑢

𝑐

𝜕

𝜕𝑥
) 𝛬  𝛼

0 𝛬  𝛽
0 𝐹𝛼𝛽 + 𝛾𝑢 (

𝑢

𝑐

𝜕

𝜕𝑐𝑡
+
𝜕

𝜕𝑥
)𝛬  𝛼

1 𝛬  𝛽
0 𝐹𝛼𝛽 +

𝜕

𝜕𝑦
𝛬  𝛼
2 𝛬  𝛽

0 𝐹𝛼𝛽 +
𝜕

𝜕𝑧
𝛬  𝛼
3 𝛬  𝛽

0 𝐹𝛼𝛽 , 

(11) 

which reduces to: 

𝛁′ ∙ 𝐄′ = 𝛾𝑢 [𝛁 ∙ 𝐄 − 𝑢 (
𝜕𝐵𝑧
𝜕𝑦

−
𝜕𝐵𝑦

𝜕𝑧
) + 𝑢𝜇0𝜖0

𝜕𝐸𝑥
𝜕𝑡
]. 

(12) 

By repeating the process for 𝑦-direction and 𝑧-direction, we observe the following general pattern: 

𝛁′ ∙ 𝐄′ = 𝛾𝑣 [𝛁 ∙ 𝐄 − 𝑣 (
𝜕𝐵𝑥
𝜕𝑧

−
𝜕𝐵𝑧
𝜕𝑥
) + 𝑣𝜇0𝜖0

𝜕𝐸𝑦

𝜕𝑡
], 

𝛁′ ∙ 𝐄′ = 𝛾𝑤 [𝛁 ∙ 𝐄 − 𝑤 (
𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥
𝜕𝑦
) + 𝑤𝜇0𝜖0

𝜕𝐸𝑧
𝜕𝑡
]. 

where, respectively, 𝑣 and 𝑤 are the velocities of relative motions in 𝑦-direction and 𝑧-direction, and 𝛾𝑣  and 𝛾𝑤  are their 

associated Lorentz factors. Therefore, the Lorentz transformed Gauss’s law of electricity in arbitrary direction: 

𝛁′ ∙ 𝐄′ = 𝛾 [−𝐯 ∙ (𝛁 × 𝐁) + 𝜇0𝜖0
𝜕

𝜕𝑡
𝐯 ∙ 𝐄 +

𝜌

𝜖0
] 

  (13) 

where 𝐯 is the relative velocity in arbitrary direction, 𝜌 = 𝜖0𝛁 ∙ 𝐄 is the electric charge density and 𝛾 = (1 −
|𝐯|𝟐

𝑐2
)
−1

is 

the Lorentz factor in same arbitrary direction as 𝐯.  Applying the previous calculations on Equation (8) yields the Lorentz transformed 

Gauss’s law of magnetism in arbitrary direction: 

𝛁′ ∙ 𝐁′ = 𝛾 [
𝐯 ∙ (𝛁 × 𝐄)

𝑐2
+ 𝜇0𝜖0

𝜕

𝜕𝑡
𝐯 ∙ 𝐁 + 𝜌𝑚] 

(14) 

where 𝜌𝑚 = 𝛁 ∙ 𝐁  is the magnetic charge density. Equations (13) and (14) can be converted into one another (with a negative 

sign for the curl terms to account for Lenz’s law) using the transformation equation 𝐄 = 𝑐𝐁. The conversion occurs term by term, which 

leads to the following implication: 

𝛁 ∙ 𝐁 =
1

𝑐
𝛁 ∙ 𝐄 = 𝜇0𝑐𝜌 

(15) 

where 𝜌 is the electric charge density. Therefore, this defines the magnetic charge density 𝜌𝑚  in terms of the electric charge 

density, as derived from Lorentz transformation of the Maxwell’s equation: 

𝜌𝑚 = 𝜇0𝑐𝜌 [Wb/m3] 

(16) 

The magnetic charge density 𝜌𝑚  has unit of magnetic flux density, [Wb/m3]. Integrating Equation (16) over a finite volume 

yields the magnetic monopole, as obtained from the Lorentz transformation of Maxwell's equations: 

𝑞𝑚 = 𝜇0𝑐𝑞 [Wb] 

(17) 

where 𝑞𝑚  is the magnetic charge (monopole), and 𝑞 is the electric charge. The magnetic monopole has unit of magnetic flux. 

The weber (symbol: Wb) is the SI unit. Equation (16) enable us to rewrite the four-current vector 𝐽𝛼  in term of magnetic charge density, 

that is,  𝐽𝛼 = (
𝜌𝑚

𝜇0
, 𝐉), where 𝐉 is the electric current density. 
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3.2 Lorentz transformation of Maxwell-Ampere’s law and Faraday’s law 

Maxwell-Ampere’s law and Faraday’s law are central to classical electromagnetism, describing the dynamic relationship 

between electric and magnetic fields. Faraday’s law of induction states that a changing magnetic field induces an electric field. Maxwell-

Ampere’s law, an extension of Ampère’s original law, incorporates the concept of displacement current, accounting for the effects of 

changing electric fields. This modification by Maxwell was pivotal in predicting the existence of electromagnetic waves, such as light, 

which propagate at the speed of light in a vacuum. Together, these laws explain phenomena ranging from electromagnetic induction to 

the behavior of electromagnetic waves. Maxwell-Ampere’s law can be obtained in a usual way from Equation (7) by substituting 𝛽′ =

1,2,3, assuming the relative uniform motion 𝑢 between the field inertial frame of reference, 𝑆-frame, and the observer inertial frame of 

reference, 𝑆′-frame, is in the 𝑥-direction: 

𝜕

𝜕𝑥𝛼
′ 𝐹

𝛼′1 =
𝜕

𝜕𝑥′0
𝐹′01 +

𝜕

𝜕𝑥′1
𝐹′11 +

𝜕

𝜕𝑥′2
𝐹′21 +

𝜕

𝜕𝑥′3
𝐹′31, 

                   = (
𝜕𝐵𝑧′

′

𝜕𝑦′
−
𝜕𝐵𝑦′

′

𝜕𝑧′
) −

1

𝑐2
𝜕𝐸𝑥′

′

𝜕𝑡′
=
𝜕𝑥𝛿

𝜕𝑥𝛼
′

𝜕

𝜕𝑥𝛿
𝛬  𝛼
𝛼′𝛬  𝛽

1 𝐹𝛼𝛽 , 

                   = 𝛾𝑢 (
𝜕

𝜕𝑐𝑡
+
𝑢

𝑐

𝜕

𝜕𝑥
) 𝛬  𝛼

0 𝛬  𝛽
1 𝐹𝛼𝛽 + 𝛾𝑢 (

𝑢

𝑐

𝜕

𝜕𝑐𝑡
+
𝜕

𝜕𝑥
)𝛬  𝛼

1 𝛬  𝛽
1 𝐹𝛼𝛽 +

𝜕

𝜕𝑦
𝛬  𝛼
2 𝛬  𝛽

1 𝐹𝛼𝛽 +
𝜕

𝜕𝑧
𝛬  𝛼
3 𝛬  𝛽

1 𝐹𝛼𝛽 , 

which reduces to: 

𝜕𝐵𝑧′
′

𝜕𝑦′
−
𝜕𝐵𝑦′

′

𝜕𝑧′
= 𝛾𝑢 [(

𝜕𝐵𝑧
𝜕𝑦

−
𝜕𝐵𝑦

𝜕𝑧
) −

𝑢𝛁 ⋅ 𝐄

𝑐2
−
1

𝑐2
𝜕𝐸𝑥
𝜕𝑡
] +

1

𝑐2
𝜕𝐸𝑥′

′

𝜕𝑡′
. 

And 

𝜕

𝜕𝑥𝛼
′ 𝐹

𝛼′2 =
𝜕

𝜕𝑥′0
𝐹′02 +

𝜕

𝜕𝑥′1
𝐹′12 +

𝜕

𝜕𝑥′2
𝐹′22 +

𝜕

𝜕𝑥′3
𝐹′32, 

                   = (
𝜕𝐵𝑥′

′

𝜕𝑧′
−
𝜕𝐵𝑧′

′

𝜕𝑥′
) −

1

𝑐2

𝜕𝐸𝑦′
′

𝜕𝑡′
=
𝜕𝑥𝛿

𝜕𝑥𝛼
′

𝜕

𝜕𝑥𝛿
𝛬  𝛼
𝛼′𝛬  𝛽

2 𝐹𝛼𝛽 , 

                   = 𝛾𝑢 (
𝜕

𝜕𝑐𝑡
+
𝑢

𝑐

𝜕

𝜕𝑥
) 𝛬  𝛼

0 𝛬  𝛽
2 𝐹𝛼𝛽 + 𝛾𝑢 (

𝑢

𝑐

𝜕

𝜕𝑐𝑡
+
𝜕

𝜕𝑥
)𝛬  𝛼

1 𝛬  𝛽
2 𝐹𝛼𝛽 +

𝜕

𝜕𝑦
𝛬  𝛼
2 𝛬  𝛽

2 𝐹𝛼𝛽 +
𝜕

𝜕𝑧
𝛬  𝛼
3 𝛬  𝛽

2 𝐹𝛼𝛽 , 

which reduces to: 

𝜕𝐵𝑥′
′

𝜕𝑧′
−
𝜕𝐵𝑧′

′

𝜕𝑥′
= [(

𝜕𝐵𝑥
𝜕𝑧

−
𝜕𝐵𝑧
𝜕𝑥
) −

1

𝑐2
𝜕𝐸𝑦

𝜕𝑡
] +

1

𝑐2

𝜕𝐸𝑦′
′

𝜕𝑡′
. 

Similarly 

𝜕

𝜕𝑥𝛼
′ 𝐹

𝛼′3 =
𝜕

𝜕𝑥′0
𝐹′03 +

𝜕

𝜕𝑥′1
𝐹′13 +

𝜕

𝜕𝑥′2
𝐹′23 +

𝜕

𝜕𝑥′3
𝐹′33, 

                   = (
𝜕𝐵𝑦′

′

𝜕𝑥′
−
𝜕𝐵𝑥′

′

𝜕𝑦′
) −

1

𝑐2
𝜕𝐸𝑧′

′

𝜕𝑡′
=
𝜕𝑥𝛿

𝜕𝑥𝛼
′

𝜕

𝜕𝑥𝛿
𝛬  𝛼
𝛼′𝛬  𝛽

3 𝐹𝛼𝛽 , 

                   = 𝛾𝑢 (
𝜕

𝜕𝑐𝑡
+
𝑢

𝑐

𝜕

𝜕𝑥
) 𝛬  𝛼

0 𝛬  𝛽
3 𝐹𝛼𝛽 + 𝛾𝑢 (

𝑢

𝑐

𝜕

𝜕𝑐𝑡
+
𝜕

𝜕𝑥
)𝛬  𝛼

1 𝛬  𝛽
3 𝐹𝛼𝛽 +

𝜕

𝜕𝑦
𝛬  𝛼
2 𝛬  𝛽

3 𝐹𝛼𝛽 +
𝜕

𝜕𝑧
𝛬  𝛼
3 𝛬  𝛽

3 𝐹𝛼𝛽 , 

which reduces to: 

𝜕𝐵𝑦′
′

𝜕𝑥′
−
𝜕𝐵𝑥′

′

𝜕𝑦′
= [(

𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥
𝜕𝑦
) −

1

𝑐2
𝜕𝐸𝑧
𝜕𝑡
] +

1

𝑐2
𝜕𝐸𝑧′

′

𝜕𝑡′
. 

By repeating the previous steps for the relative motions in the 𝑦-direction and 𝑧-direction to identify the general pattern, the 

following is obtained for the 𝑦-direction: 

𝜕𝐵𝑧′
′

𝜕𝑦′
−
𝜕𝐵𝑦′

′

𝜕𝑧′
= [(

𝜕𝐵𝑧
𝜕𝑦

−
𝜕𝐵𝑦

𝜕𝑧
) −

1

𝑐2
𝜕𝐸𝑥
𝜕𝑡
] +

1

𝑐2
𝜕𝐸𝑥′

′

𝜕𝑡′
, 
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𝜕𝐵𝑥′
′

𝜕𝑧′
−
𝜕𝐵𝑧′

′

𝜕𝑥′
= 𝛾𝑣 [(

𝜕𝐵𝑥
𝜕𝑧

−
𝜕𝐵𝑧
𝜕𝑥
) −

𝑣𝛁 ⋅ 𝐄

𝑐2
−
1

𝑐2
𝜕𝐸𝑦

𝜕𝑡
] +

1

𝑐2

𝜕𝐸𝑦′
′

𝜕𝑡′
, 

𝜕𝐵𝑦′
′

𝜕𝑥′
−
𝜕𝐵𝑥′

′

𝜕𝑦′
= [(

𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥
𝜕𝑦
) −

1

𝑐2
𝜕𝐸𝑧
𝜕𝑡
] +

1

𝑐2
𝜕𝐸𝑧′

′

𝜕𝑡′
. 

And for 𝑧-direction: 

𝜕𝐵𝑧′
′

𝜕𝑦′
−
𝜕𝐵𝑦′

′

𝜕𝑧′
= [(

𝜕𝐵𝑧
𝜕𝑦

−
𝜕𝐵𝑦

𝜕𝑧
) −

1

𝑐2
𝜕𝐸𝑥
𝜕𝑡
] +

1

𝑐2
𝜕𝐸𝑥′

′

𝜕𝑡′
, 

𝜕𝐵𝑥′
′

𝜕𝑧′
−
𝜕𝐵𝑧′

′

𝜕𝑥′
= [(

𝜕𝐵𝑥
𝜕𝑧

−
𝜕𝐵𝑧
𝜕𝑥
) −

1

𝑐2
𝜕𝐸𝑦

𝜕𝑡
] +

1

𝑐2

𝜕𝐸𝑦′
′

𝜕𝑡′
, 

𝜕𝐵𝑦′
′

𝜕𝑥′
−
𝜕𝐵𝑥′

′

𝜕𝑦′
= 𝛾𝑤 [(

𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥
𝜕𝑦
) −

𝑤𝛁 ⋅ 𝐄

𝑐2
−
1

𝑐2
𝜕𝐸𝑧
𝜕𝑡
] +

1

𝑐2
𝜕𝐸𝑧′

′

𝜕𝑡′
. 

Therefore, the Lorentz transformed Maxwell-Ampere’s law of magnetism(1): 

𝛁′ × 𝐁′ = 𝛾𝑢[(𝛁 × 𝐁)𝑥 − 𝜇0𝐽𝑥 − 𝜇0𝐽𝐷,𝑥]𝒙̂ + 𝛾𝑣[(𝛁 × 𝐁)𝑦 − 𝜇0𝐽𝑦 − 𝜇0𝐽𝐷,𝑦]𝒚̂ + 𝛾𝑤[(𝛁 × 𝐁)𝑧 − 𝜇0𝐽𝑧 − 𝜇0𝐽𝐷,𝑧]𝒛̂ 

(18) 

where 𝐽𝑥 , 𝐽𝑦 , 𝐽𝑧  are the electric currents densities in 𝑥, 𝑦, 𝑧-directions respectively, and 𝐽𝐷,𝑥, 𝐽𝐷,𝑦 , 𝐽𝐷,𝑧  are the electric 

displacement currents densities in 𝑥, 𝑦, 𝑧-directions respectively. Applying the previous calculations on Equation (8) yields the Lorentz 

transformed Faraday’s law for induction(2): 

𝛁′ × 𝐄′ = 𝛾𝑢[(𝛁 × 𝐄)𝑥 + 𝐽𝑚,𝑥 + 𝐽𝐵,𝑥]𝒙̂ + 𝛾𝑣[(𝛁 × 𝐄)𝑦 + 𝐽𝑚,𝑦 + 𝐽𝐵,𝑦]𝒚̂ + 𝛾𝑤[(𝛁 × 𝐄)𝑧 + 𝐽𝑚,𝑧 + 𝐽𝐵,𝑧]𝒛̂ 

(19) 

where 𝐽𝑚,𝑥, 𝐽𝑚,𝑦 , 𝐽𝑚,𝑧  are the magnetic currents densities in 𝑥, 𝑦, 𝑧-directions, and the quantities; 𝐽𝐵,𝑥 = 𝜕𝐵𝑥/𝜕𝑡, 𝐽𝐵,𝑦 =

𝜕𝐵𝑦/𝜕𝑡, 𝐽𝐵,𝑧 = 𝜕𝐵𝑧/𝜕𝑡, are the magnetic displacement currents densities in the same mentioned directions. Again, Equations (18) 

and (19) can be transformed into one another term by term by applying the transformation equation 𝐄 = 𝑐𝐁. However, except for the 

curl terms, the signs of the current densities and displacement current densities reverse, requiring the use of  𝐄 = −𝑐𝐁 instead. 

4. Lorentz transformation of electromagnetic stress–energy tensor 

The electromagnetic stress–energy tensor is a cornerstone of classical electromagnetism, describing the distribution and 

transfer of energy, momentum, and stress within electromagnetic fields. It captures the energy density of the fields, the flow of energy 

through space, and the forces exerted on matter. A closely related concept is the Poynting vector, which quantifies the direction and 

magnitude of energy flow carried by electromagnetic fields, offering an intuitive representation of energy transfer within a system. These 

concepts are foundational for understanding how electromagnetic energy propagates and interacts with its surroundings. In addition to 

describing energy transfer, the electromagnetic stress–energy tensor ensures the conservation of energy and momentum within 

electromagnetic fields. These conservation laws reflect the fundamental physical principles that energy and momentum cannot be 

created or destroyed but only transferred between the fields and matter. The Lorentz force and Lorentz force density further detail how 

these fields act on charged particles and currents, exerting forces that drive motion or generate stresses. Together, these principles provide 

a unified framework for analyzing the dynamics of electromagnetic fields and their interactions with matter, making the tensor an 

indispensable tool in both theoretical physics and practical applications. 

Lorentz transformation of electromagnetic stress–energy tensor can be obtained by expanding the tensor equation (20) over 

index 𝛽′ = 0,1,2,3, and in 𝑥, 𝑦, 𝑧-directions for every index. 

𝝏

𝝏𝒙𝜶
′ 𝑻

𝜶′𝜷′ =
𝝏𝒙𝜹

𝝏𝒙𝜶
′

𝝏

𝝏𝒙𝜹
𝜦  𝜶
𝜶′𝜦  𝜷

𝜷′
𝑻𝜶𝜷,                                                                                        (20) 

The process yields the two following transformed equations(3): 

 
(1) The contribution of displacement current 1/c2(∂𝐄′/ ∂t′) has been set to zero. 

(2) The contribution of displacement current 1/c2(∂𝐁′/ ∂t′) has been set to zero. 

(3) The contribution of electromagnetic energy density 𝜕𝜌′𝐸𝑀 𝜕𝑡′⁄  has been set to zero. 
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𝛁′ ⋅ 𝐒′ = 𝜸 [𝛁 ⋅ 𝐒 + 𝐟 ⋅ 𝐯 +
𝝏𝝆𝑬𝑴

𝝏𝒕
]                                                                                       (21) 

And 

𝐟′ = 𝛾𝑢 [𝑓𝑥 +
𝑢

𝑐2
(
𝜕𝜌𝐸𝑀
𝜕𝑡

+ 𝛁 ⋅ 𝐒)] 𝒙̂ + 𝛾𝑣 [𝑓𝑦 +
𝑣

𝑐2
(
𝜕𝜌𝐸𝑀
𝜕𝑡

+ 𝛁 ⋅ 𝐒)] 𝒚̂ + 𝛾𝑤 [𝑓𝑧 +
𝑤

𝑐2
(
𝜕𝜌𝐸𝑀
𝜕𝑡

+ 𝛁 ⋅ 𝐒)] 𝒛̂ 

(22) 

where 𝐒 is the Poynting vector, 𝜌𝐸𝑀  the electromagnetic energy density, and f the Lorentz force density. Therefore, the law of 

Lorentz transformed electromagnetic Lorentz force: 

𝐅′ = 𝛾𝑢 [𝐹𝑥 +
𝑢

𝑐2
𝑑

𝑑𝑡
∫𝜌𝐸𝑀
𝑉

𝑑3𝑥 +
𝑢

𝑐2
∫𝐒
𝑆

⋅ 𝑑𝐚] 𝒙̂ + 𝛾𝑣 [𝐹𝑦 +
𝑣

𝑐2
𝑑

𝑑𝑡
∫𝜌𝐸𝑀
𝑉

𝑑3𝑥 +
𝑣

𝑐2
∫𝐒
𝑆

⋅ 𝑑𝐚] 𝒚̂

+ 𝛾𝑤 [𝐹𝑧 +
𝑤

𝑐2
𝑑

𝑑𝑡
∫𝜌𝐸𝑀
𝑉

𝑑3𝑥 +
𝑤

𝑐2
∫𝐒
𝑆

⋅ 𝑑𝐚] 𝒛̂ 

5. Lorentz transformed Maxwell’s equation at non-relativistic velocities 

In the non-relativistic limit, where |𝐯| ≪ 𝑐, the binomial expansion can be applied to expand 𝛾 and approximate Equations 

(13), (14), (18), and (19). By neglecting higher-order terms in the expansion and terms involving the factor | 𝐯|2 𝑐2⁄ —since they are 

divided by 𝑐2  and 𝑐4 , which are extremely large—we obtain: 

                                                                   𝛁′ ⋅ 𝐄′ = − 𝐯 ⋅ (𝛁 × 𝐁) + 𝜇0𝜖0
𝜕

𝜕𝑡
𝐯 ⋅ 𝐄 +

𝜌

𝜖0
 

                                                                   𝛁′ ⋅ 𝐁′ =    
𝐯 ⋅ (𝛁 × 𝐄)

𝑐2
+ 𝜇0𝜖0

𝜕

𝜕𝑡
𝐯 ⋅ 𝐁 + 𝜌𝑚 

                                                                   𝛁′ × 𝐄′ =   𝛁 × 𝐄 + 𝐉𝐦 + 𝐉𝐁 

                                                                   𝛁′ × 𝐁′ =   𝛁 × 𝐁 − 𝜇0𝐉 − 𝜇0𝐉𝐃 

(23) 

Equations (21) and (22) upon binomial approximation become: 

𝛁′ ⋅ 𝐒′ = 𝛁 ⋅ 𝐒 + 𝐟 ⋅ 𝐯 +
𝜕𝜌𝐸𝑀
𝜕𝑡

, 𝑓′ = 𝑓 +
𝑣

𝑐2
𝜕𝜌𝐸𝑀
𝜕𝑡

+
𝑣

𝑐2
𝛁 ⋅ 𝐒 

(24) 

And the Lorentz force: 

𝐅′ = 𝐅 +
𝑣

𝑐2
𝑑

𝑑𝑡
∫𝜌𝐸𝑀
𝑉

𝑑3𝑥 +
𝑣

𝑐2
∫𝐒
𝑆

⋅ 𝑑𝐚 

Although Equations (13), (14), (18), and (19) represent Lorentz-transformed Maxwell's equations, they could also be referred 

to as the "Theory of Relativistic Dyno-electromagnetism." This is because the scalar fields—𝛁′ ⋅ 𝐄′(𝐱, 𝐱̇, 𝑡), 𝛁′ ⋅ 𝐁′(𝐱, 𝐱̇, 𝑡)—and the 

vector fields—𝛁′ × 𝐄′(𝐱, 𝐱̇, 𝑡), 𝛁′ × 𝐁′(𝐱, 𝐱̇, 𝑡)—are velocity-dependent and include relativistic corrections. On the other hand, 

Equations (23) might be labeled the "Theory of Dyno-electromagnetism." Dyno-electromagnetism is a new theoretical framework that 

extends Maxwell's equations by applying the Lorentz transformation, thereby integrating relativistic mechanics and introducing velocity 

dependence alongside position and time. The term "dyno" is derived from the Greek word "dynamis" (δύναμις), meaning "power" or 

"force," reflecting the framework's focus on the dynamic relationship between motion, energy, and electromagnetic fields. In this 

framework, the divergence and curl of the electric 𝐄 and magnetic 𝐁 fields are generalized to incorporate the effects of relative motion or 

velocity, offering a more comprehensive understanding of electromagnetic phenomena in dynamic systems. 
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6. A model of monopoles from Lorentz-transformed Gauss’s law of magnetism 

 

Figure (1): Cutting through the monopole exposes its internal composition and illustrates the connection between E, B, and ꞷ 

Lorentz-transformed Gauss's law of magnetism, in its formulation, offers a potential mechanism that could be involved in the 

creation of magnetic monopoles, particularly through the term 𝛾(𝐯 ∙ (𝛁 × 𝐄)/𝑐2) = 𝛁′ ⋅ 𝐁′. To properly investigate this proposed 

model of a magnetic monopole, it is necessary to express this term in spherical coordinates. Hence, expanding Equation (8) in spherical 

coordinates requires utilizing Lorentz transformation and the dual electromagnetic field tensor, both expressed in their corresponding 

spherical coordinate forms (4). The following assumptions are made: the electric field 𝐄 is oriented in the −𝜃-direction(5), representing a 

uniform electric field in the −𝜃-direction, emanates from the bottom of a sphere, and converges at the top (see Figure (1)), 𝐄 =

(0, −𝐸𝜃 , 0), in the monopole frame of reference (𝑆); the relative uniform motion 𝐯 = (0, 0, 𝑣𝜙) is characterized by the tangential 

velocity 𝑣𝜙  in the +𝜙-direction, where 𝑣𝜙 =  𝑟 sin 𝜃 𝜔 = 𝑣′𝜙′  (𝜔 =  𝜙̇, the angular frequency of the electric field (ccw)); the 

induced magnetic field 𝐁′ lies in the radial −𝑟′-direction, converging toward the center of the sphere, 𝐁′ =  (−𝐵′𝑟′ , 0, 0), in the 

observer's frame of reference (𝑆′)(6). Additionally, 𝐸𝜃  is constant, and 𝐵′𝑟′  is spherically symmetrical with respect to 𝜃′ and 𝜙′, varying 

only with the radial coordinate 𝑟′ and remaining independent of time 𝑡′, as 𝐸𝜃  and 𝑣𝜙  are constant. While this will provide the full 

derivation of the proposed monopole model, including relativistic corrections, nevertheless, for the purposes of this paper, Equation (23) 

will be used instead. Consequently, we obtain: 

∬𝐁′ ∙ 𝑑𝐚′ = −
𝜔𝐸𝜃

𝑐2
∭𝑟2 sin2 𝜃 𝑑𝑟𝑑𝜃𝑑𝜙                                                           (25) 

Integrating over the volume of the particle's sphere and applying the divergence theorem to the left-hand side, and one can 

utilize the facts that  𝑟 = 𝑟′,  𝜃 = 𝜃′, and  𝑑𝜙 = 𝑑𝜙′ in the Galilean transformation of rotating frames (Mazumdar & Parida, 2020) (the 

result expresses both sides of the equation using prime notation, but this notation has been removed for simplicity): 

∬𝐁 ∙ 𝑑𝐚 = QM = −
𝜔𝐸𝜃
𝑐2

∭𝑟2 sin2 𝜃 𝑑𝑟𝑑𝜃𝑑𝜙 

 
(4) To ensure a comprehensive understanding of the presented model, it is advisable to refer to the approximate illustration of "Electron 

spin and magnetic moment" by Purcell (2013). 

(5) The convention used for 𝜃 is that it represents the inclination angle. 

(6) For the right hand rule used in case of moving electromagnetic field, referes to "Electrodynamics and Relativity" by Griffiths (2023). 
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Hence, the magnetic monopole QM is: 

QM = −
𝜋2

3𝑐2
𝜔𝑅3𝐸𝜃  [Wb]                                                                               (26) 

where 𝑅 represents the radius of the monopole, and the presence of the negative sign indicates that the monopole carries a 

charge of S-pole. The electromagnetic momentum density field inside the monopole is given by: 

𝐩em = − 𝜖0𝐸𝜃𝛉̂ × −𝐵𝑟 𝐫̂                                                                                        (27) 

which point into −𝜙-direction (counter to 𝐯). This field curls over the entire interior of the spherical volume of the monopole 

particle(7). The formula |𝐩em|/𝑐 =  𝜌𝑚𝑎𝑠𝑠  is suggested to provide what could be referred to as the electromagnetic mass density. Hence, 

the mass 𝑀em and the spin Sp𝑀  of the monopole are: 

Mem =∭𝜌𝑚𝑎𝑠𝑠  𝑟
2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜙       and        Sp𝑀 =∭𝑟 sin 𝜃 |𝐩em| 𝑟

2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜙                       (28) 

The same logic used to derive formulas (26) to (28) can be applied to derive similar formulas for electric monopoles, utilizing 

the equation 𝛁′ ⋅ 𝐄′ = − 𝐯 ⋅ (𝛁 × 𝐁) in this case. Furthermore, the combination of 𝐄 = (0, 𝐸𝜃 , 0) and 𝐯 = (0, 0, 𝑟 sin 𝜃 (−𝜔)) 

equally materializes a monopole with S-charge. However, this differs from the first case by exhibiting a reversed spin direction 

(clockwise). The following table outlines the key characteristics of electric and magnetic monopoles. 

Table (1): Key characteristics of electric and magnetic monopoles 

Orientations of the field and frequency Orientation of the spin Type of the monopole 

(𝑬𝜽, 𝝎) Spin-down N-charge magnetic monopole 

(−𝑬𝜽, −𝝎) Spin-up N-charge magnetic monopole 

(−𝑬𝜽, 𝝎) Spin-down S-charge magnetic monopole 

(𝑬𝜽, −𝝎) Spin-up S-charge magnetic monopole 

(𝑩𝜽, 𝝎) Spin-down (–) charge electric monopole 

(−𝑩𝜽, −𝝎) Spin-up (–) charge electric monopole 

(−𝑩𝜽, 𝝎) Spin-down (+) charge electric monopole 

(𝑩𝜽, −𝝎) Spin-up (+) charge electric monopole 

7. Discussion 
An analysis of the monopole model reveals that an observer in the particle's rest frame (𝑆-frame) detects no charge, mass, or 

spin. However, a second observer (𝑆′-frame), relative to whom the 𝑆-frame is rotating counterclockwise (ccw), will observe the particle 

to possess charge, mass, and clockwise (cw) spin. Notably, a third observer (𝑆′′-frame), rotating ccw relative to the 𝑆′-frame but with a 
higher relative velocity than the 𝑆-frame, will observe the particle with mass (potentially different from that observed by the 𝑆′-frame, 
depending on the relative velocities difference), an opposite charge relative to the 𝑆′-frame observation, and ccw spin . 

It is assumed that the monopole model must be constrained to maintain a 90-degree angle between the dipole-like field 

(whether electric or magnetic, e.g., 𝐸𝜃) and the tangential relative velocity, 𝑣𝜙 . This dipole field and the tangential relative velocity are 

also permitted to undergo rotational transformation only through 180 degrees(8) (a reflection transformation) to preserve their 
perpendicularity. These constraints ensure alignment between the classical monopole models, derived from Lorentz transformed Gauss's 

laws of electricity and magnetism, and the quantum theoretical framework, as the angle in the dot product 𝐯 ∙ (𝛁 × 𝐄) or 𝐯 ∙ (𝛁 × 𝐁) 

 
(7) Worth mentioning 𝛁 × 𝐩em itself is a vector field presents in every electric or magnetic charged particle or antiparticle. This field 

seems to sustain particle mass by continuously flowing in and out of the particle's volume. It may extend and permeate throughout 
the entire universe. 

(8) It has been assumed that transitions between polarization states (𝐸𝜃 ↔ −𝐸𝜃 or 𝐵𝜃 ↔ −𝐵𝜃) through reflection transformations are 
possible. Consequently, the charged particle (whether electric or magnetic) will switch its charge polarity if such a transition occurs, while 

the particle's spin direction remains constant. 
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could otherwise take any arbitrary value in classical formulations. This restriction further implies that the magnetic monopole belongs to 
the fermion particle family, specifically exhibiting spin-1/2 (up and down) properties. Based on these assumptions, Table (1) has been 

constructed . 

Without loss of generality, the S-charge magnetic monopole (above) can be understood as a unique electromagnetic wave—

a localized wave rotating around a central axis and bounded within a defined volume. As is typical, the electric field (𝐄), magnetic field 
(𝐁), and the Poynting vector (𝐒) remain mutually perpendicular to each other . 

By representing a charged particle as a spinning, localized electromagnetic wave—initiated by the spin of a microscopic dipole 
(either electric or magnetic), which is formed through the alignment of the electric field 𝐄 or magnetic field 𝐁 along the 𝜃-direction in the 

spherical coordinate system—and integrating this with the findings from Table (1) (which show that a charged particle exhibits two spin 

states), further insights can be drawn. Specifically, when the tangential relative velocity of the field remains in the +𝜙-direction (particle 
spins down), the magnetic field 𝐁 displays two polarization states: one aligned vertically upward along the −𝜃-direction, (−𝐵𝜃 , 𝜔), 

corresponding to the (+)-charged particle, and the other aligned vertically downward along the +𝜃-direction, (𝐵𝜃 , 𝜔), corresponding to 

the (−)-charged particle. Similarly, the electric field 𝐄 exhibits the same two polarization states: vertically upward along the −𝜃-direction, 
(−𝐸𝜃 , 𝜔), for the S-charged particle, and vertically downward along the +𝜃-direction, (𝐸𝜃 , 𝜔), for the N-charged particle (with the 

tangential relative velocity also remaining in the +𝜙-direction). The same observations of the two polarization states associated with the 

𝐄 and 𝐁 fields apply to the case of tangential relative velocity in the −𝜙-direction (particle spins up), but with an alternation in the polarity 

of the corresponding charges. Simultaneously, each charge polarity ((+), (−), N, S) encompasses, in its characteristics, the two field 

polarization states and the two particle spin states. Also, the electric charge polarities (+) and (−) share the two field polarization states 
and the two spin states, as do the magnetic charge polarities N and S (each in relation to their respective fields). Moreover, the four 
combinations of the two field polarization states and the two spin states cover all possible manifestations of charge polarities. Therefore, 

the polarity of a charged particle (whether electric or magnetic) can be considered a discrete state rather than an intrinsic constant 
property. This is because, as shown above, it depends on discrete states of polarization and spin(9). 

Given the quantum principle that the spin state of a charged particle is a superposition of its two spin states (up and down), 
and considering the above reasoning regarding discrete states of charge polarity, it is reasonable now to extend this idea to the charge of 

the particle, suggesting that the charge itself exists in a superposition of two charge states: (+) and (−) for an electric particle, and N and 

S for a magnetic particle—this reflects the superposition of its dipole field polarization states(10) (vertically up and down) per spin state. 
Since a charged particle can exist in any of these charge states, the term “unicharge” (derived from “unified charge,” which refers to a 

single particle exhibiting both charge polarities, (+) and (−) or N and S) can aptly describe this superposition state, whether the particle 

is electric or magnetic in nature . 

The electric unicharge particles which embody a superposition of (+) and (−) charge states as well as up and down spin 

states, are governed by Dirac’s equation. While Dirac’s equation typically treats electrically charged particles and their antiparticles as 

distinct entities, the electric unicharge concept redefines Dirac’s spinor to accommodate unicharge states: (−) and (+) charge states with 

their corresponding up and down spin states. It now accommodates four states of a single particle, unifying the particle and its antiparticle 

into one entity. In principle, the spinor components accommodating the particle, and its antiparticle have been renamed as the (−) and 

(+) charge states, respectively. The particle’s spin states indirectly characterize the spin states of the dipole (since the dipole’s spin 
direction is opposite to that of the particle). A prominent example of an electric unicharged particle is the electron-positron pair, which, 

owing to its importance, can be termed the “unitron.” This naming scheme can be generalized to other charged particles, such as referring 

to the proton-antiproton pair as the “uniproton,” and so on . Dirac’s equation can also be adapted to describe magnetic unicharged 

particles by reinterpreting the (−)-charge state as the S-charge state and the (+)-charge state as the N-charge state. 

Given that the radius of the magnetic monopole is expected to be extremely small, as with any particle, the ratio 𝑅3/𝑐2  would 

result in a very small magnitude of charge, making it potentially difficult to detect . 

The conventional derivation of electromagnetic waves now requires not only that the equations be source-free but also that 
they be expressed in a proper frame of reference (the relative velocity is required to be set to zero) . 

While the modified framework provides a reasonable explanation for how particles or antiparticles, whether magnetically or 
electrically charged, come into existence, it does not explain why nature assigns specific values to certain characteristics of these particles, 
such as mass, charge, magnetic moment, and others. This limitation could potentially be addressed if the framework is successfully 

quantized, or at least if the model of particle formation is quantized . 

 
(9) Polarity has also been previously demonstrated to be a relativistic frame-dependent quantity in the context of continuous change. 

(10) They represent a new internal degree of freedom that characterizes charged particles, in addition to their spin degree of freedom. 
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Additionally, the framework does not directly address chargeless and massless particles in the same way it does for charged 
particles. While the assumption of two counter-rotating dipoles might provide a potential solution, it appears arbitrary and would require 

experimental validation to confirm its validity. Nevertheless, the mathematical steps—starting with writing the tensor equation in a 

specific frame of reference, substituting the tensors on the left-hand side with their transformed expressions, and expanding the 

equation—can be applied to other relevant scenarios in physics to reveal deeper structural insights. 

8. Concluding remarks 
It is shown that both the magnetic charge density and magnetic current density can be derived and seamlessly integrated into 

Maxwell’s equations via a direct and rigorous approach. The methodology is deemed direct, as it originates from the electromagnetic field 
tensor without reliance on additional assumptions, and safer, as it is accomplished solely through mathematical deduction. 

In the deduced framework, Maxwell's equations are redefined as transformation equations, establishing a framework in which 

the divergence and curl of electric and magnetic fields become frame-dependent quantities that vary under Lorentz transformations. 
These quantities are demonstrated to depend not only on space and time but also on the uniform relative velocity between the 
electromagnetic field's reference frame and the observer's reference frame. Consequently, electromagnetic induction, in all its aspects, is 
revealed to be a relativistic phenomenon. Furthermore, it is shown that an electric charge can originate purely from a magnetic source, 

and a magnetic charge can originate purely from an electric source. 

One of the most significant findings is the theoretical demonstration of the non-vanishing divergence of the magnetic field, 

meaning 𝛁 ∙ 𝐁 ≠  0. It is shown that the divergence of magnetic field does not always equal zero, contrary to Gauss’s law of magnetism. 
This result indicates that the existence of a magnetic monopole can arise as a consequence of the relative motion of an electric field. It 
underscores that the observed absence of magnetic charge density (𝜌𝑚) and magnetic field (𝐁) in one inertial frame does not hold 
universally across all reference frames. Instead, the transformation between reference frames can give rise to magnetic phenomena, even 

if they were absent in the original frame, due to the relativistic relationship between electric and magnetic fields. 
It is also shown that the restoration of magnetic charge density and magnetic current density to Maxwell’s equations achieves 

a remarkable symmetry between electric and magnetic fields, particularly through their interconversion under the relation 𝐄 = 𝑐𝐁. This 
symmetry may reduce Maxwell’s equations to just two equations—one for the divergence of the field and another for its curl. By 

introducing the change of variables 𝐄 = 𝑐𝐁  and  𝐄′ = 𝑐𝐁′, these two equations can be written equivalently for either the electric or 

magnetic field. This elegant unification not only enhances the theoretical framework of electromagnetism but also underscores the 

profound beauty and coherence inherent in the laws governing electromagnetic phenomena. Furthermore, this highlights another 

triumph of the theory of relativity, as its application to Maxwell’s equations restores all missing terms, elevating electromagnetism to its 

full glory—a success that may stand on equal footing with the discovery of gravitational waves and black holes. 

It is also shown that the proposed monopole model exhibits a remarkable dependence on the observer's frame of reference, 

underscoring the fundamental influence of relativity on its physical characteristics and revealing insights into the nature of charge, mass, and 
spin. Specifically, in the particle's rest frame (𝑆-frame), the absence of charge, mass, and spin is demonstrated, highlighting the intrinsic neutrality 

of the system in its own reference state. However, when observed from a rotating frame (𝑆′-frame) moving clockwise relative to the 𝑆-frame, 
the particle manifests charge, mass, and clockwise spin, emphasizing the role of relative motion in the emergence of these properties. Further 

complexity is unveiled in the 𝑆′′-frame, where an observer rotating counterclockwise relative to the 𝑆′-frame but with a greater relative velocity 

than the 𝑆-frame detects a mass potentially distinct from that observed in the 𝑆′-frame, an inverted charge, and counterclockwise spin. These 
findings illustrate the intricate interplay between relative motion and the observed physical properties, emphasizing the frame-dependent 

nature of fundamental quantities in the monopole model. Hence, it can be inferred that tiny dipoles might exist, which could act as compelling 
candidates for boson particles responsible for granting mass, charge, and spin to other fundamental particles. 

Although physics literature describes charge, mass, and spin as intrinsic properties of charged particles, it has been 

demonstrated that they are not intrinsic but rather relative phenomena. Furthermore, while charge is traditionally considered an intrinsic 
property, leading to the association of dipole materialization with spin charge, it has been shown that the dipole is likely the most 

fundamental entity, responsible for the emergence of all these properties. 
Emerging from microscopic dipole field dynamics, this framework establishes spin orientation and polarization configuration 

as interdependent quantum degrees of freedom that collectively define charge manifestation. The results in Table (1) reveal how this 
dual relationship naturally gives rise to the unicharge paradigm, where particles exist as quantum superpositions of both charge states 

(+/− or N/S) and spin orientations. This perspective renders the conventional particle-antiparticle distinction obsolete, instead 
presenting matter and antimatter as different quantum configurations of the same fundamental entities through their spin-polarization 

entanglement. Remarkably, Dirac's equation intrinsically incorporates this unified view, naturally describing both electric and magnetic 
unicharge systems via their coupled spin-polarization dynamics. 
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The framework further demonstrates that reflection symmetry induces correlated transformations between spin and 
polarization states, establishing charge polarity as an emergent property of their dynamic interplay (The wave nature of charged particles 

fundamentally links spin and polarization states in determining charge polarity). By revealing how charge, spin, and polarization form an 

inseparable triad of wave properties, this approach provides a unified foundation connecting classical and quantum physics through the 

intrinsic behavior of localized electromagnetic waves. 
It is also shown that Maxwell’s original equations are valid only at non-relativistic velocities and that they are not an exact 

theory but an approximation to a more general relativistic theory. Additionally, it is demonstrated that the electric and magnetic charge 
densities (and hence the charges) are scalar fields that vary with position, change in position, and time. 
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