

https://journals.ajsrp.com/index.php/jnslas ISSN: 2522-3356 (Online) • ISSN: 2522-3356 (Print)

Geochemistry of Clay Minerals Associated with Phosphates in Akashat Formation (middle Paleocene), Iraqi Western Desert

Prof. Kotayba Tawfiq Al-Youzbakey^{*1}, Prof. Salim Mahmood Al-Dabbagh

¹ Dams and Water Resources Research Center | University of Mosul | Iraq

Received: 01/03/2023 **Revised**: 12/03/2023

Accepted: 08/04/2023 Published:

30/06/2023

* Corresponding author: kotaybatawfiq@gmail.c om

Citation: Al-

Youzbakey, K. T., & Al-Dabbagh, S. M. (2023). Geochemistry of Clay Minerals Associated with Phosphates in Akashat Formation (middle Paleocene), Iraqi Western Desert. *Journal of natural sciences, life and applied sciences, 7(2)*, 1–14. https://doi.org/10.26389/ AJSRP.B010323

2023 © AISRP • Arab Institute of Sciences & Research Publishing (AISRP), Palestine, all rights reserved.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC) <u>license</u> **Abstract:** Many Trace elements are related to the presence of clay minerals, which are associated with francolite in phosphorites. Although the clay minerals are found in very low concentration, but they explain clearly the distribution of trace elements in phosphatic facies of Akashat Formation in Iraqi western desert. Almost these clays are palykorskite, sepiolite and montmorillonite which are found through the francolite formation in shallow marine environment in the continental shelf. Clays found with phosphate as distracted grains and within the phosphatic grain in fractures or around the cortex in phosooids and phoscortoids. The organic activity and the surface charges on the suspended clay particles play an important role in fixing the clays on phosphatic grains through the formation process or early diagenesis stages. The presence of clay minerals (despite their low percentage) controls the distribution of some trace elements, most of which are adsorbed on clay minerals such as zinc (Zn), nickel (Ni), copper (Cu) and cobalt (Co), while some of them replace the main elements such as rubidium (Rb) instead of potassium (K) and gallium (Ga) instead of aluminum (Al), and other elements are distributed between adsorption on francolite and clay minerals such as vanadium (V), chromium (Cr) and manganese (Mn). **Keywords:** phosphorites, francolite, palygorskite, trace elements, phosphatic grains, phosphatic grains, phosphatic deposits.

جيوكيميائية المعادن الطينية المصاحبة للخامات الفوسفاتية في تكوين عكاشات (الباليوسين الأوسط)، الصحراء الغربية العراقية

الأستاذ الدكتور / قتيبة توفيق اليوزبكي*¹، الأستاذ الدكتور / سالم محمود الدباغ 1¹ مركز بحوث السدود والموارد المائية | جامعة الموصل | العراق

المستخلص: ترتبط كثير من العناصر الأثرية في الفوسفورايت بوجود المعادن الطينية المصاحبة للمعادن الفوسفاتية (الفرانكولايت). وعلى الرغم من وجودها بتراكيز قليلة إلا إنها تفسر بشكل واضح توزيع العناصر الأثرية في السحنات الفوسفاتية لتكوين عكاشات في الصحراء الغربية العراقية. ويعتقد على الأغلب إن هذه المعادن هي الباليكورسكايت والسيبيولايت والمونتموريللونايت التي ترافق تكوين الفرانكولايت في البيئات البحرية الضحلة في الجرف القاري. تترافق المعادن الطينية مع الفوسفات أما بشكل حبيبات منفصلة أو ضمن الحبيبات الفوسفاتية المختلفة في التكسرات الموجودة في هذه العادن الطينية مع الفوسفات أما بشكل حبيبات منفصلة أو ضمن واللحائية. وتلعب المادة العضوية والشحنة على الدقائق الغروية الطينية دورا في تثبيت الدقائق الطينية على الحبيبات السرئية واللحائية. وتلعب المادة العضوية والشحنة على الدقائق الغروية الطينية دورا في تثبيت الدقائق الطينية على الحبيبات الفوسفاتية العربيات الفوسفاتية المحتلفة في التكسرات الموجودة في هذه الحبيبات وحول أغلفة الحبيبات العلافية مثل الحبيبات السرئية واللحائية. وتلعب المادة العضوية والشحنة على الدقائق الغروية الطينية دورا في تثبيت الدقائق الطينية على الحبيبات الفوسفاتية العربيات الموسفاتية المحتلفة في التكسرات الموجودة وي مدن الطينية دورا في تثبيت الدقائق الطينية على الحبيبات الفوسفاتية تولي مراحل التكوين أو العمليات التحويرية المبكرة. ويتحكم وجود المعادن الطينية (2n) والنيكار (NO) والكوبلت (OD)، بينما العناصر الأثرية التي تمتز اغلبها على المعادن الطينية مثل عناصر الخارصين (Zn) والنيكل (NI) والنحاس (NI) والكوبلت (OD)، بينما تحل بعضها محل العناصر الرئيسة مثل الربديوم (Rb) محل البوتاسيوم (X) والكاليوم (Ga) محل الألنيور (IC)، وتتوزع عناصر أخرى بين الأمتزاز على الفرانكولايت والمعادن الطينية مثل الفناديوم (V) والكروميوم (C) والمنايور (IC)، وينما برى

الكلمات المفتاحية: الفوسفورايت، الفرانكولايت، الباليكورسكايت، العناصر الأثرية، الحبيبات الفوسفاتية، الرواسب الفوسفاتية.

المقدمة

ينكشف تكوين عكاشات في الصحراء الغربية العراقية، (شكل: 1). ويتكون تكوين عكاشات من ثلاث وحدات طباقية هي عضو الطريفاوي (الباليوسين الأسفل) وعضو الهري (الباليوسين الأوسط) وعضو دويمة (الباليوسين الأعلى) (Al-Bassam *et al.*, 1990). ويعد عضو الهري مهم من الناحية الاقتصادية لاحتوائه على الخامات الفوسفاتية المستغلة صناعيا بشكل طبقات متعاقبة مع صخور جيرية فوسفاتية. يتكون عضو الهري من صخور الحجر الجيري الصدفي البيضاء اللون والشديدة الصلادة وغنية بمحتواها من متحجرات محراثية القدم ثم طبقة قليلة السمك (1 الصدفي البيضاء اللون والشديدة الصلادة وغنية بمحتواها من متحجرات محراثية القدم ثم طبقة قليلة السمك (1 المودفي البيضاء اللون والشديدة الصلادة وغنية بمحتواها من متحجرات محراثية القدم ثم طبقة قليلة السمك (1 المودفي البيضاء اللون والشديدة الصلادة وغنية بمحتواها من متحجرات محراثية القدم ثم طبقة وليلة السمك (1 الفوسفاتي بسمك 10 متر تقريبا (في مقلع عكاشات الأول الرئيس) وتتكون الفوسفورايت مدمالق لا عضوية وبرازية متر) من صخور غرينية عالية الكلس، تعقبها الصخور الاقتصادية المكونة من تعاقبات الفوسفورايت والحجر الجيري وسرئيات وحبيبات لحائية وكبرولايت فضلا عن بقايا عظام وأسنان الأسماك (أبا حسين، 1987؛ Al-Bassam وبرازية معدل الون يوالنقيب، 2002)، (شكل: 2). توجد الصخور الاقتصادية بأفقين ويبلغ معدل تركيز خامس وسرئيات وحبيبات لحائية وكبرولايت فضلا عن بقايا عظام وأسنان الأسماك (أبا حسين، 1987؛ الفوسفاتي بسمك 10 متر تقريبا (في مقلع عكاشات الأول الرئيس) وتتكون الفوسفورايت م دمالق لا عضوية وبرازية وسرئيات وحبيبات لحائية وكبرولايت فضلا عن بقايا عظام وأسنان الأسماك (أبا حسين، 1982؛ معرور العوربي والنقيب، 2002)، (شكل: 2). توجد الصخور الاقتصادية بأفقين ويبلغ معدل تركيز خامس أوكسيد الفوسفور فيها حوالي (2-22)% (أبا حسين، 1987). أما صخور الغطاء فتتكون من طبقة بسمك 4 متر من أوكسيد الفوسفور فيها حوالي والنقيب، 2002)، (شكل: 2). توجد الصخور الغطاء فتتكون من طبقة بسمك 4 متر من أوكسيد الفوسفور فيها حوالي والنقيب، 2002).

أشارت الدراسات الصخارية (اليوزبكي والدباغ، 2021) إلى وجود نوعين رئيسيين من الصخور، هي الفوسفورايت والصخور الجيرية الفوسفاتية. وتتدرج هذه الصخور الواحدة باتجاه الأخرى وفق محتواها من الحبيبات الفوسفاتية، ونوع المادة السمنتية كلسية أو فوسفاتية. وينعكس ذلك على المحتوى المعدني، إذ يمثل الحبيبات الفوسفاتية، ونوع المادة السمنتية كلسية أو فوسفاتية. وينعكس ذلك على المحتوى المعدني، إذ يمثل الفرانكولايت المعدن الرئيس في الفوسفورايت، ويمثل الكالسايت المعدني الثانوي المصاحب له، في حين يكون الفرانكولايت هو المعدن الرئيس في الفوسفور الجيرية الفوسفاتية والفرانكولايت يمثل الكالسايت هو المعدن الرئيس وي الموسفور الجيرية الفوسفاتية والفرانكولايت يمثل الكالسايت المعدني الثانوي المصاحب له، في حين يكون والفرانكولايت المعدن الرئيس في الموسفور الجيرية الفوسفاتية والفرانكولايت يمثل الكالسايت.

أما بقية المعادن وهي الباليكورسكايت والدولومايت والكوارتز والجبسوم الثانوي، التي عادة ما تكون مصاحبة للأبتايت في الرواسب البحرية (Stephan and Richter, 2000)، فتوجد بنسب ضئيلة ومتباينة بين الفوسفورايت والصخور الجيرية الفوسفاتية وكذلك بين سحناتها، لذلك تتوزع الأكاسيد الرئيسة والعناصر الأثرية بشكل رئيس بين الفرانكولايت والكالسايت والمعادن الطينية.

الدراسات السابقة

أشارت الدراسات السابقة إلى هيمنة معدن الباليكورسكايت على المعادن الطينية المصاحبة لفوسفورايت الباليوسين في تكوين عكاشات؛ بسبب البيئة الرسوبية الغنية بالمغنيسيوم. فقد أشارت أبا حسين (1987) و -(A) (Al- و السيبيولايت، فضلا عن Bassam, *et al.*, 1990) و المايت مع فوسفورايت والسيبيولايت، فضلا عن الدولومايت مع فوسفورايت (تكوين عكاشات) في البيئة الغنية بالمغنيسيوم. يبلغ معدل تراكيز كل من هذه الاكاسيد الدولومايت مع فوسفورايت (تكوين عكاشات) في البيئة الغنية بالمغنية بالمغنيسيوم. فقد أشارت أبا حسين (Al-Bassam, *et al.*, 1990) (مار الباليكورسكايت والسيبيولايت، فضلا عن الدولومايت مع فوسفورايت (تكوين عكاشات) في البيئة الغنية بالمغنيسيوم. يبلغ معدل تراكيز كل من هذه الاكاسيد بشكل عام اقل من 1% عدا السليكا التي يتباين معدل تركيزها بين (1-4)%، وتعزى هذه الزيادة إلى وجود أطوار السليكا الحرة مثل الجالسيدوني والكوارتز في بعض النماذج، التي يشغل البعض القليل منها كمادة سمنتية سليكية.

الشكل 1: خارطة موقعية وجيولوجية توضح موقع منجم عكاشات وانتشار تكوين عكاشات في الصحراء الغربية العراقية، (مأخوذة عن Buday and Jassim, 1984).

	الصخار	محك الطبقات •	الصلادة	المتحجرات	اللون	لأحياء	حقر ا)s %	السحنات	الملاحظ
	Ĵ	LDDM	FTTT	RÇA	w	وفرقا	نوعها	P ₂ C		
-									Shelly limestone	صدور الغطاع حجر جيري غني بالمتحجر ات
								32.4 32.2	P. Co. Pl. phosphorite	الطبقة الأقتصادية الأولى: تحوي على دمالق لاعضويـــة وقليل من البرازية، وحبيبــات
							н	32.3 22.3 18.3	C. Co. Pl. phosphorite C. Pl. phosphorite	لحانيه، والمسادة السسطنية فوسفاتية مع نسبة قليلة مـــــن السبار الدقيق
								8.8 23.1 25.7	Ph. Limestone C. Fo. Pl. phosphorite	تحوي على دمالق لاعضويـــة والغورام أغلبها قاعية
						þ	н	13.6 17.2	Pl. Ph. Wackestone	
7.6								26.1 28.0 26.4 25.3	P. Pl. phosphorite	دمالق لاعضویــــة وبرازیـــة وقلیــل مــن بقایــا العظـــان و اکاســید الحدیــد، المــــادة
			1152 oddoria				·	30.5 29.5		السمنتية فوســفاتية وبعضــها كلسية
	I:I							23.1	C. Pl. phosphorite	~
	I I				IL.			14.3	Ph. Limestone	1 may 1 1 -5611 15.1-11
	ļi ļ							22.5	C. Pl. phosphorite	الطبعة الاقتصادية التانية
								8.5	Ph. Limestone P. Pl. phosphorite	الحجر الجــيري الفوســـفاتي متداقية من الفوســـفاتي
2.8	i¦i			Ш				0.0	Ph Limestone	متعاقب مسبع انطف
-				h				24.1	P. Pl. phosphorite	العوسعور ايت
1.0								28.7	Cp. bone ooidal phosphorite	طبقةً (.B.O.C.B) تحوي دمالق بر ازية وكبرو لايت
				$ \Gamma $					C. mudstone	أسفل الصخور القتصادية

صلدة جدا =vT ,صلدة T= , متوسطة الصلادة =mT ,هشة F= , طبقات كتلية =M , طبقات سميكة =T , طبقات نحيفة =T , رقائقية , رمادي =G , أبيض =W , وفيرة =A , شائعة =C , نادرة R= ,

الشكل 2: المقطع الجيولوجي للصخور الاقتصادية في مقلع عكاشات.

ذكر (اليوزبكي والدباغ، 2021) وجود المعادن الطينية ضمن التكسرات الموجودة في الدمالق. التي تتكون أثناء مراحل الدهك والتشظي، كما تلعب المادة العضوية دورا في التقاط دقائق الطين الغروية على سطح الدمالق والحبيبات الفوسفاتية. ويعتقد أن الشحنات على الدقائق الطينية تلعب دورا في امتزازها على الحبيبات الفوسفاتية أثناء مرحلة النمو المتزايد للفرانكولايت والكولوفين (Gallala *et al.*, 2016).

يمثل أوكسيد الكالسيوم وخامس أوكسيد الفسفور والفلور المكونات الرئيسة لمعدن الفرانكولايت، وترتبط بعض الأكاسيد والعناصر الأثرية بالفرانكولايت على الأغلب بصيغة إحلال في مواقع الكالسيوم والفسفور والفلور (Altschuler, 1980) ؛ اليوزبكي والدباغ، 2020)، أو ممتزة على سطح حبيباته (Altschuler, 1980)، إذ يساعد المحتوى القليل من المعادن الطينية على زيادة إمتزاز العناصر الأثرية على الأبتايت (Gallala *et al.*, 2016).

تهدف الدراسة الى تقدير توزيع العناصر المرتبطة بالطور المعدني الطيني المصاحب لمعدن الفرانكولايت في صخور الفوسفورايت العائدة لتكوين عكاشات.

طرائق التحليل

تم تحليل 117 إنموذجاً تمثل نماذج الفوسفورايت والصخور الجيرية الفوسفاتية ضمن الصخور الاقتصادية في منجم عكاشات من المقلع الأول (بقسميه الرئيس والثانوي) والمقلع الثاني. تم تحليل العناصر الرئيسة بشكل أكاسيد التي تتكون منها الأطوار المعدنية الفوسفاتية وغير الفوسفاتية، وهي: السليكا (SiO₂)، الألومينا (Al₂O₃)، أكاسيد الحديد (Fe₂O₃)، المغنيسيا (MgO)، أوكسيد الكالسيوم (CaO)، أوكسيد الصوديوم (NaO)، أوكسيد البوتاسيوم (K2O)، خامس أوكسيد الفسفور (P2O₅)، الفلور (F)، الكلور (Cl)، ثالث أوكسيد الكبريت (SO3)، ثنائي أوكسيد الكربون (CO2)، المادة العضوبة (C_{organic})، ماء التبلور (⁺H₂O) وماء الرطوبة ([−]H₂O)، والعناصر الأثرية التيتانيوم (Ti)، الفناديوم (V)، الكروميوم (Cr) المنغنيز، (Mn)، الكوبلت (Co)، النيكل (Ni)، النحاس (Cu)، الخارصين (Zn)، الكاليوم (Ga)، الزرنيخ (As)، الروىديوم (Rb)، والسنترونتيوم (Sr)، اليتريوم (Y)، الزركونيوم (Zr)، الرصاص (Pb) واليورانيوم (U). أجربت التحاليل الكيميائية باستخدام تقنية الأشعة السينية الوميضية (X-ray fluorescence, XRF) نوع (PHILIPS, PW.1450/10) في وحدة الأشعة السينية في قسم علوم الأرض - كلية العلوم / جامعة الموصل، وقد تم التحليل وفق الظروف المعتمدة في الوحدة باستخدام الطرق القياسية (Jeffery and Hutchison, 1981). استخدم انبوب الاشعة السينية من نوع الكروميوم لقياس العناصر الرئيسة في ظروف 40 كيلوفولت و30 ملى امبير وموجه من النوع الخشن في مجال مفرغ من الهواء وخلال 20 ثانية قياس لكل عنصر. بينما استخدمت عدة انابيب لتوليد الاشعة السينية وعدة بلورات محللة في ظروف متغيرة من ناحية فرق الجهد المستخدم ومقدار التيار ونوع الموجه والمتحسس وحالة مسار الاشعة بمدة قياس 40 ثانية تبعا لنوع مجاميع العناصر المطلوب تقييسها. كما استخدمت الطرائق الكيميائية التقليدية لحساب كل من CO2، [°]H₂O⁺ ، C_{org} ، ⁺H₂O.

النتائج والمناقشة

جيوكيميائية الأكاسيد الرئيسة

تعكس السليكا SiO₂ والألومينا Al₂O₃ والمغنيسيا MgO وأكاسيد الحديد Fe₂O₃ والبوتاسيوم K₂O مجموعة عناصر الطور المعدني الطيني؛ بسبب كونها عناصر منقولة (detrital elements)، لذلك فإنها تمثل الجزء الفتاتي في الرواسب الفوسفاتية (Franceschelli, et al., 2000, Yi et al., 2013). وعلى الرغم من تراكيزها المنخفضة؛ إلا أن التحاليل المعدنية أشارت إلى وجود نسبة ضئيلة من الباليكورسكايت التي تعكس تراكيز الاكاسيد أعلاه.

يشير الجدولين (1 و 2) إلى أن تراكيز هذه العناصر تزداد نسبيا في الصخور الجيرية الفوسفاتية مقارنة بالفوسفورايت، وربما يعود ذلك إلى فترات انخفاض التجهيز بالمكونات الفوسفاتية نتيجة وجود الحواجز أو تذبذب مستوى سطح البحر؛ بسبب ارتفاع قاع الجرف القاري (Al-Bassam, 1992).

المقلع الأول الرئيس المقلع الأول الثانوي							. 15511	
<u>ــتفاتية</u>	الصخور الفوس	<u>ت</u>	<u>الفوسـفوراي</u>	<u>فاتية</u>	الصخور الفوس	<u>ت</u>	الفوســفوراي	الا کاسید ال عبیر ق
المعدل	المدى	المعدل	المدى	المعدل	المدى	المعدل	المدى	الربيسة
3.46	11.17 - 0.54	1.6	4.09 - 0.73	1.79	4.67 - 0.26	1.39	3.16 - 0.0	SiO ₂
0.36	0.77 - 0.14	0.29	0.48 - 0.17	0.32	0.43 - 0.14	0.27	0.40 - 0.12	AI_2O_3
0.36	0.95 - 0.19	0.23	0.46 - 0.16	0.29	0.50 - 0.16	0.21	0.50 - 0.14	Fe_2O_3
1.81	3.74 - 0.58	0.69	1.2 - 0.07	0.73	1.20 - 0.48	0.71	1.23 - 0.01	MgO
51.15	51.57 - 50.9	51.71	53.88 - 50.13	52.1	53.76 - 51.11	51.3	53.60 - 49.55	CaO
0.05	0.11 - 0.02	0.03	0.06 - 0.02	0.05	0.08 - 0.03	0.04	0.12 - 0.02	K ₂ O
1.03	4.69 - 0.2	0.50	1.23 - 0.27	0.33	0.42 - 0.21	0.32	0.47 - 0.20	Na ₂ O
0.84	1.37 - 0.39	1.56	2.56 - 1.17	0.62	0.95 - 0.35	1.34	1.71 - 0.95	SO ₃
10.70	16.25 - 5.86	24.61	29.18 - 20.78	12.3	17.23 - 7.82	25.6	32.48 - 18.14	P_2O_5
1.36	1.97 - 0.6	3.03	3.90 - 1.9	1.71	2.21 - 1.06	3.21	4.63 - 2.29	F
0.39	0.65 - 0.11	0.66	3.37 - 0.10	0.24	0.62 - 0.10	0.24	0.65 - 0.14	Cl
26.39	36.19 - 18.2	12.31	16.85 - 0.8	127.	35.06 - 20.65	12.3	20.65 - 4.77	CO ₂
0.80	1.41 - 0.15	0.86	1.08 - 0.0	1.12	1.51 - 0.00	1.10	1.74 - 0.27	C _{org.}
0.83	1.31 - 0.45	1.73	2.13 - 0.98	1.12	1.51 - 0.71	1.60	2.15 - 0.30	H_2O^+
0.57	1.31 - 0.1	0.51	1.25 - 0.32	0.38	0.72 - 0.17	0.43	0.78 - 0.20	H_2O^-

الأول (الرئيس والثانوي).	الفوسفاتية للمقلع ا	الفوسفورايت والصخور ا	سة (wt%) في ا	أكاسيد الرئيا	دول (1): تراكيز الا
--------------------------	---------------------	-----------------------	---------------	---------------	---------------------

يوضح الشكل (3-أ) علاقة السليكا مع الألومينا، وتظهر بشكل علاقة طردية تأخذ اتجاهين: الأول يمثل وجودهما في المعدن الطيني الباليكورسكايت، والثاني يمثل وجودهما في المونتموريللونايت. وقد أشار Al-Bassam, et) (1990, ما إلى وجود هذين المعدنين فضلا عن الكوارتز والجالسيدوني متصاحبة مع الأبتايت والكالسايت في فوسفورايت الباليوسين العراقية، وهيمنة معدن الباليكورسكايت على المعادن الطينية الأخرى، وهي المونتموريللونايت والسيبيولايت.

ية	<u>الصخور الفوسفات</u>		الأكاسيد	
المدى	المدى	المعدل	المدى	الرئيسة
0.28	0.66 - 0.00	0.90	0.02.23 -	SiO ₂
0.26	0.38 - 0.11	0.24	0.38 - 0.12	Al ₂ O ₃
0.17	0.22 - 0.10	0.18	0.32 - 0.12	Fe ₂ O ₃
0.52	0.72 - 0.33	0.57	0.89 - 0.28	MgO
52.85	54.28 - 47.64	52.21	57.54 - 50.57	CaO
0.03	0.04 - 0.01	0.03	0.08 - 0.02	K ₂ O
2.13	11.62 - 0.17	0.63	4.88 - 0.16	Na ₂ O

جدول (2): تراكيز الأكاسيد الرئيسة (wt%) في الفوسفورايت والصخور الفوسفاتية للمقلع الثاني.

Al-Youzbakey
Al-Dabbagh

ية	الصـخور الفوسـفات		الفوس_فورايت	الأكاسيد
المدى	المدى	المعدل	المدى	الرئيسة
12.60	17.07 - 9.07	25.55	33.9 - 20.09	P ₂ O ₅
1.36	2.22 - 0.45	3.01	4.98 - 1.32	F
2.25	12.98 - 0.07	0.62	5.41 - 0.06	Cl
0.58	1.05 - 0.36	1.21	1.59 - 0.71	SO ₃
23.66	30.7 - 6.73	10.22	18.84 - 1.99	CO ₂
0.99	1.44 - 0.59	1.28	1.74 - 0.90	C org.
1.04	1.43 - 0.70	1.85	2.65 - 1.34	H_2O^+
0.28	0.56 - 0.14	0.37	0.59 - 0.2	H ₂ O ⁻

يوضح الشكل (3-ب) بشكل عام إلى العلاقة الطردية بين السليكا والمغنيسيا، التي تعكس معدن

الشكل 3: العلاقة بين السليكا وكل من: (أ): الألومينا و(ب) المغنيسيا و(ج) التيتانيوم التي تعكس المعادن الطينية في الفوسفورايت والصخور الفوسفاتية.

الباليكورسكايت على الرغم من إنها تبدو متباعدة بسبب وجود المغنيسيوم في معدن الدولومايت، الذي يوجد بنسبة ضئيلة في النماذج، فضلا عن النسب الضئيلة من المغنيسيا التي تدخل في الشبكة البلورية للفرانكولايت (اليوزبكي والدباغ، 2020) ولغرض التعرف على المعادن الطينية، وطبيعة علاقة العناصر المرتبطة بها سواء أكانت إحلال أم امتزاز أم امتصاص معدني. تم رسم العلاقة بين نسبة Al₂O₃/SiO₂ ونسبة العنصر إلى السليكا ، ويوضح الشكل (4-أ) العلاقة بين Al₂O₃/SiO₂ و MgO/SiO₂ التي تعكس الاكاسيد الرئيسة في المعادن الطينية ، وبلاحظ في الشكل أن العلاقة تأخذ اتجاهين احدهما: رئيس، يعكس تركيزاً عالياً نسبياً للألومينا مقابل تركيز منخفض نسبيا للمغنيسيا، وبمثل هذا الاتجاه معدن الباليكورسكايت، وثانيهما ثانوي يعكس تركيزاً قليلاً من الألومينا مقابل تركيز عال نسبيا للمغنيسيا ويمثل معدن السيبيولايت، إذ أن نسبة Al₂O₃/MgO في الباليكورسكايت أعلى مما في السيبيولايت (Murray, 2002)، وعادة ما يتصاحب هذان المعدنان في البيئة البحربة الضحلة المالحة. كما تعكس النسبة المولية المنخفضة للمغنيسيا في الصيغة الكيميائية للفرانكولايت (اليوزىكى والدباغ، 2020) إلى استهلاكه في أطوار أخرى مثل المعادن الطينية والدولومايت (Galfati et al., 2010)، مما يساعد على حصول النمو المتزايد للحبيبات الفوسفاتية، لأن وجود المغنيسيوم يحول دون نمو الفرانكولايت (Van Cappellen and Berner, 1990). (وتجدر الإشارة إلى الأخذ بعين الاعتبار وجود المغنيسيا في الدولومايت، مما يؤثر في دقة هذه العلاقة).

انعكس هذان الاتجاهان على بقية العلاقات بين نسبة Al₂O₃/SiO₂ ونسبة الأكاسيد، أو العناصر الأثرية إلى السليكا، الشكل (4).

الشكل 4: العلاقات بين نسب العناصر في المعادن الطينية في الفوسفورايت.

مثال ذلك العلاقة بين Al₂O₃/SiO₂ و Fe₂O₃/SiO₂ التي تشير إلى إحلال الحديد محل الألمنيوم والمغنيسيوم في المعدنين الباليكورسكايت والسيبيولايت، (الشكل 4-ب)، فضلا عن وجود نسب ضئيلة من أكاسيد الحديد الحرة. وبالرغم من التراكيز المنخفضة جدا من أوكسيد البوتاسيوم (حوالي 0.03%)، إلا أن الشكل (4-ج) يوضح توزيع البوتاسيوم بين المعادن الطينية، إذ يدخل ضمن الطبقات البينية (inter layer). للمونتموريللونايت وبمتز على المعادن الطينية (1980) و Fe₂O₃/SiO).

يعد خامس أوكسيد الفوسفور والفلور مع أوكسيد الكالسيوم من المكونات الرئيسة لمعدن الفرانكولايت، وتتباين نماذج الفوسفورايت في الدراسة الحالية بمحتواها من خامس أوكسيد الفسفور (من 18% إلى أكثر من 34%)؛ أما في الصخور الجيرية الفوسفاتية، فيبلغ معدل خامس أوكسيد الفسفور في المقلع الأول (الرئيس والثانوي) 12.3% و 10.7% على التوالي (الجدول 1)، وفي المقلع الثاني 12.6% (جدول 2)، الذي يعتمد على تباين محتوى هذه الصخور من الحبيبات الفوسفاتية. وتعد هذه المعدلات من التراكيز قريبة نوعا ما من معدلات تركيز P₂O₅ في الفوسفورايت.

يدخل ماء التبلور ⁺H₂O في التركيب البلوري للمعادن الطينية، التي تزداد في الصخور الجيرية الفوسفاتية مقارنة مع الفوسفورايت هذا من جهة، ومن جهة أخرى فان معدلات تركيز ماء التبلور في الفوسفورايت تنحصر (1.6-(1.8)% أكثر من معدلات تركيزه في الصخور الجيرية الفوسفاتية (1.0-(1.1))%، ولذلك فان ماء التبلور يرتبط مع الطور الفوسفاتي أكثر من المعادن الطينية. لا تتفق الدراسة الحالية مع رأي ماكونيل (McConnell, 1970 in Al-Bassam, الفوسفاتية (2.0-(1975) حول إحلال ماء التبلور في الأبتايت بصيغ ⁺Ca² محل ⁺²Ca و⁻⁴ محل ⁻² (1975) حول إحلال ماء التبلور في الأبتايت بصيغ ⁺³OC محل ⁺²Ca و⁻⁴ محل ⁻⁴ (1975) مول إحلال ماء التبلور في الأبتايت بصيغ ⁺¹OC محل ⁺²Ca و⁻⁴ محل ⁻⁴ (1975) مول إحلال ماء التبلور في الأبتايت بصيغ ⁺¹OC محل ⁴² محل ⁴² محل ⁴³ محل ⁴³ محل ⁴³ (1975) مول إحلال ماء التبلور في الأبتايت بصيغ ⁴OC محل ⁴² محل ⁴³ محل ⁴² محل ⁴³ محل ⁴³ محل ⁴³ محل ⁴³ محل ⁴⁴ محل ⁴⁵ محل ⁴³ محل ⁴³ محل ⁴⁴ محل ⁴⁵ محل ⁴³ محل ⁴⁴ محل ⁴⁵ محل ⁴⁴ محل ⁴⁵ محل ⁴⁴ محل ⁴⁵ محل ⁴⁵ محل ⁴ محل ⁴ محل ⁴ محل ⁴⁴ محل ⁴⁵ محل ⁴⁴ محل ⁴⁵ محل ⁴⁴ محل ⁴⁵ محل ⁴ محل ⁴ محل ⁴⁵ محل ⁴⁵ محل ⁴ محل ⁴⁵ محل ⁴⁵ محل ⁴⁵ محل ⁴ محل ⁴ محل ⁴ محل ⁴ محل ⁴ محل ⁴⁵ محل ⁴ محل ⁴ محل ⁴⁵ محل ⁴ محل ⁴⁵ محل ⁴⁵ محل ⁴⁵ محل ⁴⁵ محل ⁴ محل ⁴ محل ⁴⁵ محل ⁴ محل ⁴ محل ⁴ محل ⁴ محل ⁴ محل ⁴ محل ⁴⁵ محل ⁴⁵

جيوكيميائية العناصر الأثرية

إن توزيع العناصر الأثرية في الفوسفورايت (الجدولين 3 و 4) لا تتحكم فيه عملية الإحلال في التركيب البلوري للفرانكولايت فقط، بل كذلك وجود الأطوار المعدنية الأخرى المصاحبة ووجود المادة العضوية التي تشير إلى النشاط الإحيائي؛ إذ تلعب دورا مهما أثناء عملية نشأة الفوسفورايت؛ لأنها تعد بمنزلة مصيدة أولى للعناصر الأثرية، وتعمل على تثبيتها، ثم تؤثر العمليات البايوكيميائية فيها فتركز بعضاً منها في الفوسفورايت (Lucas and وتعمل على مجاميع مرتبة حسب ميولها للأطوار العناصر الأثرية بشكل مجاميع مرتبة حسب ميولها للأطوار الفوسفاتية وغير الفوسفاتية.

المقلــع الأول الرئيــس						<u>1</u>	1+ - tl	
<u>فاتية</u>	الصخور الفوس	<u>يت</u>	<u>الفوسـفورا</u>	<u>فاتية</u>	الصخور الفوس	<u>بت</u>	الفوسـفورا	الغناصر
المعدل	المدى	المعدل	المدى	المعدل	المدى	المعدل	المدى	الانرية
18	29 - 5	23	37 - 2	20	28 - 13	30	206 - 1	As
1.5	2 - 1	1.5	2 - 1	2	4 - 0	1.5	4 - 0	Со
237	291 - 133	230	362 - 175	222	276 - 136	343	454 - 196	Cr
21	37 - 9	24	40 - 14	21	43 - 10	26	47 - 6	Cu
14	16 - 11	17	21 - 11	9	15 - 2	14	22 - 1	Ga
68	106 - 33	78	130 - 40	34	40 - 24	32	51 - 19	Mn

جدول (3): تراكيز العناصر الأثرية (ppm) في الفوسفورايت والصخور الفوسفاتية للمقلع الأول (الرئيس والثانوي).

Journal of Nature, Life and Applied Sciences	s (JNSLAS) • Vol 7, Issue 2 (2023)
--	------------------------------------

<u>المقامع</u> الأول الثانوي				المقلــع الأول الرئيــس				1. 11
<u>فاتية</u>	الصخور الفوس	<u>يت</u>	الفوسـفورا	<u>فاتية</u>	الصخور الفوس	<u>بت</u>	الفوسـفورا	العناصر الأشية
المعدل	المدى	المعدل	المدى	المعدل	المدى	المعدل	المدى	الا تريه
64	154 - 13	54	93 - 15	39	84 - 11	42	84 - 3	Ni
44	100 - 1	58	104 - 11	13	71 - 0	27	128 - 0	РЬ
2	3 - 1	1.67	2.2 - 1.1	2.5	3 - 2	3	73 - 1	Rb
840	1385 - 332	1437	1836 - 1230	659	962 - 389	1314	1686 - 949	Sr
353	857 - 153	224	397 - 167	243	333 - 147	230	394 - 131	Ti
23	38 - 9	39	64 - 27	24	49 - 13	46	96 - 30	U
72	88 - 51	74	170 - 17	46	104 - 0	103	202 - 21	v
25	38 - 1	43	108 - 23	18	36 - 0	53	104 - 24	Y
617	1295 - 353	514	845 - 251	529	779 - 293	535	791- 143	Zn
61	86 - 36	88	114 - 72	52	63 - 35	83	102 - 60	Zr

يوضح الجدولين (3 و 4) ارتفاع معدلات تراكيز الزركونيوم Zr واليتريوم Y والسترونتيوم Z واليورانيوم U في الفوسفورايت مقارنة بالصخور الجيرية الفوسفاتية لارتباط هذه العناصر مع مكونات الفرانكولايت (F , P₂O₅). وبشكل عام فان الزركونيوم يقل تركيزه في هذه الصخور مقارنة بمعدل تركيزه في صخور الطفل، والبالغة 160 ج. (Rose *et al.*, 1981)؛ بسبب وجوده في الطفل بطور الزركون الذي ينقل عادة على انه معدن موروث مقاوم لظروف التجوية مع الجزء الطيني. يبلغ نصف قطر ايون ⁴⁴ (0.79) انكستروم، ولا يسمح حجم هذا الايون إن يدخل موقع الفوسفور (SO \geq +R \geq 10.0)، كما لم تشر الأدبيات إلى وجود جذر 2rO4 ضمن المعادن الفوسفاتية. ولكن تتفق الفوسفور (SO \geq +R \geq 10.0)، كما لم تشر الأدبيات إلى وجود جذر 2rO4 ضمن المعادن الفوسفاتية. ولكن تتفق الدراسة الحالية مع رأي (LeGeros, 1999) في نمو بعض أطوار الفوسفات، وعلى الأخص طور 2004 معلى دولام حبيبات الزركون الفتاتية المنقولة الناعمة الحجم، وبسبب انخفاض تركيز كل من الزركونيوم واليتريوم. لم يظهر هذا الطور أثناء التحاليل المعدنية بالأشعة السينية الحائدة. ومما يؤيد وجود الزركون على انه معدن فتاتي زيادة نسبة تكون النسب فيها متقاربة (اليورنجي والدباغ، 2019)، مما تشير إلى وجود على من المعادن الفوسفاتية. ولكن تتفق مريبات الزركون الفتاتية المنقولة الناعمة الحجم، وبسبب انخفاض تركيز كل من الزركونيوم واليتريوم. لم يظهر هذا المور أثناء التحاليل المعدنية بالأشعة السينية الحائدة. ومما يؤيد وجود الزركون على انه معدن فتاتي زيادة نسبة مريبات الزركون الفتاتية بالأشعة السينية الحائدة. ومما يؤيد وجود الزركون على انه معدن فتاتي زيادة نسبة مربع تعزي ي محنات الصخور الجيرية الفوسفاتية التي تبلغ (6.4) مقارنة بسحنات الفوسفورايت البالغة (2.5)، التي تكون النسب فيها متقاربة (اليوزبكي والدباغ، 2019)، مما تشير إلى وجود طور فوسفاتي يغلف حبيبات الزركون، أو

ية	الصخور الفوسفات		الفوس_فورايت	a tvi strati
المدى	المدى	المعدل	المدى	العناصر الاترية
12	20 - 0	13	31 - 0	As
1	2 - 1	1	2 - 0	Со
218	257 - 187	335	434 - 243	Cr
17	23 - 1	21	34 - 0	Cu
15	19 - 12	15	20 - 10	Ga
30	38 - 25	35	56 - 25	Mn
26	44 - 1	28	95 - 0	Ni
31	56 - 0	36	95 - 0	Pb
3	4 - 2	3	4 - 1	Rb
662	1333 - 54	1226	1671 - 771	Sr
151	192 - 97	196	302 - 139	Ti

جدول (4): تراكيز العناصر الأثرية (ppm) في الفوسفورايت والصخور الفوسفاتية للمقلع الثاني.

ية	الصخور الفوسفات		5 ≜\$ti i⊷ti	
المدى	المدى	المعدل	المدى	العناصر الادرية
31	40 - 12	54	57 - 31	U
21	88 - 0	85	152 - 6	V
22	46 - 2	50	92 - 14	Y
392	682 - 188	503	789 - 220	Zn
40	76 - 27	73	98 - 57	Zr

يتوزع اليورانيوم U بين عدة أطوار في الفرانكولايت، والكالسايت بصيغة إحلال أو يمتز على المعادن الطينية والمادة العضوية (Dawson and Hinton, 2003 and Jerden, *et al.*, 2003). إلا أن أكثر تركيز لليورانيوم يكون في الفرانكولايت؛ إذ يعد الأخير أحد مصادر اليورانيوم، فضلا عن وجوده في مجموعة معادن الكارنوتايت مثل اوتونايت Autunite وتيويامونايت Metatyuyamunite وهي أطوار ثانوية تتكون نتيجة تجوية المعادن الفوسفاتية المحتوية على اليورانيوم (Kostov, 1968; Rose *et al.*, 1981 and soudry *et al.*, 2002). وقد المعادن الفوسفاتية المحتوية على اليورانيوم (أبا حسين، 1987). ويوجد اليورانيوم في الأطوار المصاحبة وجدت مثل الفرانكولايت أبي أن أكثر تركيز اليورانيوم (دولايت مثل اوتونايت معادن الكارنوتايت مثل اوتونايت الفرانكولايت؛ إذ يعد الأخير أحد مصادر اليورانيوم، فضلا عن وجوده في مجموعة معادن الكارنوتايت مثل اوتونايت الفرانكولايت؛ إذ يعد الأخير أحد مصادر اليورانيوم، فضلا عن وجوده في مجموعة معادن الكارنوتايت مثل اوتونايت الفرانكولايت؛ إذ يعد الأخير أحد مصادر اليورانيوم، فضلا عن وجوده في مجموعة معادن الكارنوتايت مثل اوتونايت الفرانكولايت؛ إذ يعد الأخير أحد مصادر اليورانيوم، فضلا عن وجوده في مجموعة معادن الموار ثانوية تتكون نتيجة تجوية المعادن الفوسفاتية المحتوية على اليورانيوم (Kostov, 1968; Rose *et al.*, 1981 and soudry *et al.*, 2002). وقد وجدت مثل هذه الأطوار في فوسفورايت عكاشات (أبا حسين، 1987). ويوجد اليورانيوم في الأطوار المصاحبة الفرانكولايت أيضا، إذ يحل محل الكالسيوم في الكالسايت، ويمتز على أسطح المعادن الطينية، وعادة يكون امتزازه الفرانكولايت أيضا، إذ يحل محل الكالسيوم في الكالسايت، ويمتز على أسطح المادن الطينية، وعادة يكون امتزازه الفرانكولايت أيضا، إذ يحل محل الكالسيوم في الكالسايت، ويمتز على أسطح المادن الطينية، وعادة يكون المزازه عادة أرباح مرين الفرانكولايت أيضا، إذ يحل محل الكالسيوم في الكالسايت، ويمتز على أسطح المادن الطينية، وعادة يكون امتزازه الفرانكولايت أيضا، إذ يحل محل الكالسيوم (الكولايت، ويمتز على أسطح المادن الطينية، وعادة يكون المزازي

يتوزع الكروم Cr والفناديوم V بين الفرانكولايت والمعادن الطينية، ولكنهما يرتبطان بالفرانكولايت في حالة غياب أو قلة تركيز المعادن الطينية. ويلاحظ ذلك في الجدولين (3 و4) إذ توجد زيادة نسبية لتراكيزهما في الفوسفورايت مقارنة بالصخور الجيرية الفوسفاتية، ويحصل امتزاز لهما على المادة العضوية المحيطة بالحبيبات الفوسفورايت مقارنة بالصخور الجيرية الفوسفاتية، ويحصل امتزاز لهما على المادة العضوية المحيطة بالحبيبات محل 2014 و 2014 (Porot-Lucas and Lucas, 1980 and Zarasvandi *et al.*, 2019 و 20 محل 40 في الأبتايت. وبسبب تباين النظام البلوري لمجموعة معادن 2044 (أحادي الميل - معيني قائم) (Kostov,) محل 404 في الأبتايت. وبسبب تباين النظام البلوري لمجموعة معادن 2044 (أحادي الميل - معيني قائم) (1968) الفوسفورايت مقارنة مع صخور الطفل (V محل 2014 ج.م.م) (Rose et al., 1981). يوجد الفناديوم بشكل عام منخفضة في الفوسفورايت مقارنة مع صخور الطفل (V = 201 ج.م.م) (Rose et al., 1981). يوجد الفناديوم والكروميوم أيضا في المعادن الطينية بشكل إحلال محل الألمنيوم والحديد في الطبقة الثمانية (منطحات)، كما يحصل لها امتزاز على أسطح المعادن الطينية بشكل إحلال محل الألمنيوم والحديد في الطبقة الثمانية (الموجبة العالية الشحنة أفضل من المعادن الطينية بركل إحلال محل الألمنيوم والحديد في الطبقة الثمانية (الموجبة العالية الشحنة أفضل من

ترتبط عناصر التيتانيوم Ti والربديوم Rb والكاليوم Ga بالطور المعدني الطيني إذ يحل التيتانيوم محل السليكون والروبديوم محل البوتاسيوم والكاليوم محل الألمنيوم في التركيب البلوري للمعدن الطيني (Brown and Brown, 1980). ويلاحظ من الجدولين أعلاه عدم وجود تباين كبير في محتوى الفوسفورايت والصخور الجيرية الفوسفاتية في هذه العناصر، وبشكل خاص ضمن المقطع الواحد، مما يدل أيضا على ارتباطها بالمعادن الطينية. ويلاحظ من الشكل (3-ج) علاقة قوية خطية تشير إلى إحلال التيتانيوم محل السليكون، وعدم وجود أطوار معدنية منفصلة للتيتانيوم مرافقة للمعادن الطينية (عدا نماذج قليلة جدا).

كما يوضح الشكل (4 - د ، ه) علاقة النسبة Al₂O₃/SiO₂ مع كل من Ga/SiO₂ و Ga/SiO على التوالي، التي توضح إحلالهما في المعادن الطينية . أما بالنسبة لعنصر الروبديوم فان تراكيزه المنخفضة جدا تعود إلى انخفاض تركيز أوكسيد البوتاسيوم في النماذج الذي عادةً ما يرتبط به، ويحل محله في اغلب المعادن ومنها المعادن الطينية (Brindley and Brown, 1980).

توجد عناصر الخارصين Zn والنحاس Cu والنيكل Ni والكوبلت Co عادة بصورة ممتزة على أسطح المعادن الطينية وعلى المادة العضوية (Altschuler, 1980 and Zarasvandi *et al.*, 2021)، التي تكون مصاحبة للفوسفورايت. ويلاحظ تقارب معدلات تراكيزها بين الفوسفورايت والصخور الجيرية الفوسفاتية في المقطع الواحد بشكل خاص، وكذلك بين بقية المقاطع (الجدولين 3 و 4). توضح الأشكال (4- و ، ز ، ح) تلك العلاقات الطردية في المعادن الطينية، غير أن هذه العلاقات تكون اقل وضوحا من العلاقات المعروضة في بقية أشكال الشكل (4).

يتوزع المنغنيز Mn بين الأطوار المعدنية المكونة للفوسفورايت والصخور الجيرية الفوسفاتية (Stephan and يتوزع المنغنيز Mn بين الأطوار المعدنية المكونة للفوسفورايت والصخور الجيرية الفوسفاتية (Richter, 2000 0.8 Mn²⁺)، فهو يحل محل الكالسيوم في الموقع (II) Ca في الفرانكولايت؛ إذ يبلغ نصف قطر ²⁺ 0.8 Mn انكستروم، ويحل محل الكالسيوم في الكالسايت. ويمتز على المعادن الطينية والمادة العضوية ويوجد في أكاسيد الحديد الحرة (Ca (II) محل الكالسيوم في الكولايت؛ إذ يبلغ نصف قطر ²⁺ 0.8 Mn انكستروم، ويحل محل الكالسيوم في الكالسايت. ويمتز على المعادن الطينية والمادة العضوية ويوجد في أكاسيد الحديد الحرة (Ca (II) محل الكالسيوم في الكالسايت. ويمتز على المعادن الطينية والمادة العضوية ويوجد في أكاسيد مع أي الحديد الحرة (Dawson and Hinton, 2003)، ولذلك لا تظهر علاقات ارتباط لهذا العنصر بشكل واضح مع أي عنصر من العناصر الأخرى، كما أن معدلات تركيزه في الفوسفورايت والصخور الجيرية الفوسفاتية متقاربة، في حين عنصر من العناصر الأخرى، كما أن معدلات تركيزه في الفوسفورايت والصخور الجيرية الفوسفاتية متقاربة، في حين عنصر من العناصر الأخرى، كما أن معدلات تركيزه في الفوسفورايت والصخور الجيرية الفوسفاتية متقاربة، في حين عنصر من موقع إلى آخر (الجدولين 3 و 4) وربما يعزى هذا التشابه في الموقع الواحد واختلافه عن المواقع الأخرى إلى تتباين من موقع إلى آخر (المدوليت والكربونات والمعادن الطينية والمواد العضوية وأكاسيد الحديد الحرة.

يوجد الرصاص Pb والزرنيخ As في الفوسفورايت أكثر نسبيا من الصخور الجيرية الفوسفاتية، ويتباين محتواهما من مقطع إلى آخر (الجدولين 3 و 4)، وربما يعود إلى تباين تركيز المادة العضوية، التي تمتزها وتباين توزيعهما في الأطوار المعدنية (Zarasvandi *et al.*, 2021). وعلى الرغم من الألفة الجالكوفيلية لهما فان تباين هذا التوزيع لم يظهر علاقة ارتباط بينهما.

الخلاصة

تساعد عملية تحول المعادن الطينية البحرية مثل المونتمور يللونايت على سحب المغنيسيوم من مياه البحر وتتحول إلى الباليكورسكايت والسيبيولايت، وهذا بدوره يساعد على تكوين الفرانكولايت إذ إن وجود المغنيسيوم يمنع من تكوين انوية الفرانكولايت، ولذلك يلاحظ الباليكورسكايت مترافقا مع الفرانكولايت في سحنات الفوسفورايت وكذلك ضمن حبيبات الفرانكولايت خلال عملية تكوينها مثل الدمالق الفوسفاتية التي تحوي المعادن الطينية في التكسرات الموجودة ضمن الدمالق. إن الشحنة الظاهرة على دقائق المعادن الطينية تساعد على امتزازها على أسطح أغلفة السرئيات والحبيبات اللحائية الفوسفاتية، وتلعب المادة العضوية دورا في ذلك من خلال نشاطها أثناء العمليات التحويرية.

ويتحكم وجود المعادن الطينية (على الرغم من نسبتها الواطئة) في توزيع بعض العناصر الأثرية التي تمتز اغلبها على المعادن الطينية مثل الكوبلت والنحاس والنيكل والخارصين، بينما تحل بعضها محل العناصر الرئيسة مثل إحلال الروبديوم محل البوتاسيوم والكاليوم محل الألمنيوم، وتتوزع عناصر أخرى بين الأمتزاز على الفرانكولايت والمعادن الطينية مثل الكروميوم والفناديوم والمنغنيز.

المصادر

- أبا حسين، أسماء على عبد الرحمن، "دراسة جيوكيميائية وبتروغرافية ومعدنية لوحدات الباليوسين الفوسفاتية في منطقة الكعرة
 عكاشات"، أطروحة دكتوراه غير منشورة، كلية العلوم جامعة بغداد، 277 صفحة، 1987.
- اليوزبكي، قتيبة توفيق والدباغ، سالم محمود، "جيوكيميائية الفوسفورايت والصخور المصاحبة لها ضمن تكوين عكاشات (الباليوسين الأوسط) في منجم عكاشات، الصحراء الغربية العراقية. الجزء الثاني: العناصر الأثرية"، المجلة العراقية الوطنية لعلوم الأرض، كلية العلوم جامعة الموصل، 19، 2019.
- اليوزبكي، قتيبة توفيق والدباغ، سالم محمود، "الكيمياء البلورية لمعدن الفرانكولايت في فوسفورايت عكاشات (الباليوسين الأوسط) الصحراء الغربية العراقية"، مجلة العلوم الطبيعية والحياتية والتطبيقية، مؤسسة المجلة العربية للعلوم ونشر الأبحاث، 14. (4)، 52-66. 2020.

- اليوزبكي، قتيبة توفيق والدباغ، سالم محمود، "دور الصفات البيتروغرافية في دراسة توزيع الأبتايت في فوسفورايت تكوين
 عكاشات، الصحراء الغربية العراقية"، المجلة العربية للنشر العلمي، (عدد خاص)، 53-84، 2021.
- واليوزبكي، قتيبة توفيق والنقيب، سالم قاسم، "التقييم البتروغرافي والمعدني والجيوكيميائي لصخور منجم عكاشات وخلطات
 النفايات لخطوط انتاج صناعة الفوسفات"، مجلة علوم الرافدين، كلية العلوم جامعة الموصل، 13، (4)، 70-90، 2002.
- Al-Bassam, K. S. "Crystal Chemistry of Some Synthetic Apatite", Jour. Geol. Soci. Iraq, VIII, 6-23, 1975.
- Al-Bassam, K. S. "Gensis of the Late Cretaceous-Early Tertiary Phosphorites in Iraq", Iraqi Geological Jour., 25, (3), 80-103, 1992.
- Al-Bassam, K. S., Karim, S.A., Mahmoud, K. Yakta, S. A., Saeed, L. K. and Salman, M. "Geological Survey of the Upper Cretaceous-Lower Tertiary Phosphorite-bearing Sequence, Western Desert, Iraq", Scale (1:25000). S.E. of Geological Survey and Mining, Baghdad, 208P, 1990.
- Altschuler, Z.S. "The Geochemistry of Trace Elements in Marine Phosphorite. Part I : Characteristic abundances and Enrichment", A Symposium of the 10th Inter. Conf. on Sed. By Bentor, 1980 (Edi.) The Society of Economic Paleontologists and Mineralogists, 29,19-30, 1980.
- Brindley, G. W. and Brown, G. "Crystal Structure of Clay Minerals and their X-ray Identification". Mineralogical Society, 495P. 1980.
- Buday, T. and Jassim, S.Z. "Tectonic Map of Iraq, 1:1,000,000 Geological Survey Publications", Baghdad, Iraq, 1984.
- Dawson, J.B. and Hinton, R.W., "Trace Element Content and Partitioning in Calcite, Dolomite and Aptite in Carbonatite, Phalaborwa, South Africa", Mineralogical Magazine, 67, (5), 921-930, 2003.
- Franceschelli, M., Puxeddu, M. and Carta, M., "Minerology and Geochemistry of Late Ordivician Phosphate-bearing Oolitic Ironstone from NW Sardinia, Italy", Mineralogy and Petrology, 69, (3-4), 267-293, 2000.
- Galfati, I., Béji Sassi, A., Zaïer, A., Bouchardon, J.L., Bilal, E., Joron, J.L And Sassi, S., "Geochemistry and mineralogy of Paleocene–Eocene Oum El Khecheb phosphorites (Gafsa–Metlaoui Basin) Tunisia", Geochemical Journal, 44, 189-210, 2010.
- Gallala, W., Saïdi, M., El Hajii, S., Zayani, K., Gaied, M.E. and Montacer, M., "Characterization and Valorization of Tozeur-Nefta Phosphate Ore Deposit (Southwestern Tunisia)", Procedia Engineering, Published by Elsevier Ltd., 138, 8–18, 2016.
- Jeffery, P. G. and Hutchison, D., "Chemical methods of rock analysis". 3rd ed., Pergamon Press, Oxford, 379P. 1981.
- Jerden, J.L., Sinha, A.K. and Zelazny, L., "Natural Immobilization of Uranium by Phosphate Mineralization in an Oxidizing Saprolite-soil Profile: Chemical Weathering of the Coles Hill Uranium Deposit, Virginia", Chemical Geology, 199, (1-2), 129-157, 2003.
- Kostov, I., "Mineralogy", Trans. by Oliver & Boyd LTD. Printed by Robert & Sons LTD. London, 587P, 1968.
- LeGeros, R.Z., "Calcium Phosphate in Demineralizition / Remineralization Processes", Jour. Clin. Dent. 10, 65-73, 1999.
- Murray, H., "Industrial Clays Case Study. Mining Minerals and Sustainable Development" Report No. 64, International Institute for Environment Development. IIED & WBCSD, 2002.
- Onuigbo, E. N., Okoro, A. U. and Chibuzor, S. N., "Geochemistry and Paleoenvironment of the Phosphorites from the Ameki Formation, Niger Delta, Nigeria", Global Journal of Geological Sciences, 18, 1-14, 2020.
- Prevot-Lucas, L. and Lucas, J., "Behavior of some Trace Elements in Phosphatic Sedimentary Formations". A Symposium of the 10th Inter. Cong. On Sed. By Bentor, 1980 (Edi.). The Society of Economic Paleontologists and Mineralogists, 29, 31-40, 1980.
- Pufahl, P.K and Groat, L.A., "Sedimentary and Igneous Phosphate Deposits: Formation and Exploration: An Invited Paper", Economic Geology, 112, 483–516, 2016.

- Rakovan, J., Reeder, R. J., Elzinga, E., Cherniak, D. J., Tait, C. D. and Morris, D. E., "Crystal Chemistry of U (VI) in Apatite Determined by X-ray Absorption Spectroscopy", Denever Annual Meeting (October 27-30, 2002). The Geological Society of America Publishing, Paper No.138–4, 2002.
- Rose, A.W., Haekes, H.E. and Webb, J.S., "Geochemistry in Mineral Exploration", 2nd Edit. Academic Press, London. 657P, 1981.
- Soudry, D., Ehrlich, S., Yoffe, O. and Nathan, Y., "Uranium Oxidation State and Related Variation in Geochemistry of Phosphorites from the Negev", Chemical Geology, 189, (3-4), 213-230, 2002.
- Stephan, A. and Richter, D.K., "Preservation and Chemical Alteration of Biogenic Francolite and Calcite from Marine Organism". Journal of Conference Abstracts (Cambridge Publications), 5, (2), 466, 2000.
- Van Cappellen, P. and Berner, R., "Crystal Growth of Marine Apatite", 2nd International Symposium, Geochemistry of the Earth's Surface & Mineral Formations, Aix en Prevence, France, 331-333, 1990.
- Yamanaka, S. and Kaizumi, M., "Structural Consideration of Zirconium Phosphate and its Organic Complexes", Clays and Clay Minerals, 23, (6), 477-478, 1975.
- Yi, H., Balan, E., Gervais, C., Segalen, L., Fayon, F., Roche, D., Person, A., Morin, G., Guillaumet, M., Blanchard, M., Lazzeri,
 M. and Babonneau, F., "A carbonate-fluoride defect model for carbonate-rich fluorapatite", American Mineralogist, 98, (5-6), 1066-1069, 2013.
- Zarasvandi, A., Fereydouni, Z., Alizadeh, B. and Soleimani, B., "Trace Elements Geochemistry in the Zagros Phosphorite Horizon: New Approach on Deposition and Genesis", Journal of Economic Geology, 13, (2), 353-386. 2021.
- Zarasvandi, A., Fereydounia, Z., Pourkaseba, H., Sadeghib, M., Mokhtaric, B. and Alizadeh, B." Geochemistry of trace elements and their relations with organic matter in Kuhe-Sefid phosphorite mineralization, Zagros Mountain, Iran", Ore Geology Reviews, 147, 72-87, 2019.