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Abstract: The object of this paper is study the notions of weak Baer and weak Rickart rings and modules. We obtained
many characterizations of weak Rickart rings and provide their properties. Relations ship between a weak Rickart (weak
Baer) module and its endomorphism ring are studied. We proved that a weak Baer module with no infinite set of nonzero
orthogonal idempotent elements in its endomorphism ring is precisely a Baer module. In addition, the endomorphism ring
of a semi-projective weak Rickart module is semi-potent and the endomorphism ring of a semi-injective coweak Rickart
module is semi-potent. Furthermore, we show that a free module is weak Baer if and only if its endomorphism ring is left

weak Baer.
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1. Introduction

Itis considered that Kaplansky is the first who defined the concept of Baer ring in [9], where a ring
R is said to be a Baer ring if every right (left) annihilator of any nonempty subset of R is generated by an
idempotent as right (left) ideal. It is clear that these two notions are right-left symmetric. Following [3], a
ring R is said to be a right (left) Rickart ring if every right (left) annihilator of any signal element of R is
generated by an idempotent as right (left) ideal, which is equivalent, to every a principal right (left) ideal of
Ris projective; i.e., R is a right (left) p.p —ring [4] and [5]. It is well-known that the notion of Rickart
rings is not left-right symmetric. The concept of Baer rings was extended by Rizvi-Roman [13] to the
general module theoretic setting. A module M is said to be a Baer module if the right annihilator in M of
every nonempty subset of S =Endg(M)is generated by an idempotent of S, which is equivalent, to
every leftannihilatorin S of any submodule of M is generated by an idempotent of S

In section 2, we study a weak Rickart rings and provide some characterizations and investigate its
properties. We have proved that the endomorphism ring S of an R—module M is right weak Rickart
ring if and only if for every a € S with Ker(a) #0, Ker(a) contains a non-zero direct summand of
M . Also, itis proved that the endomorphism ring S of an R — module M is left weak Rickart if and only
if forevery € S with Im(a) # M, Im(x) contained in a direct summand of K #M of M .

In section 3, it is proved that, if Mis a semi-projective retractable module, then the
endomorphism ring of M is a left weak Rickart ring if and only if M is a weak Rickart module and if M is
a semi-injective co-retractable module, then the endomorphism ring of M is right weak Rickart if and only
if M is a coweak Rickart module. In addition to, the endomorphism ring of a semi-projective weak Rickart
module is semi-potent and the endomorphism ring of a semi-injective coweak Rickart module is semi-
potent. In section 4, we study a weak Baer modules and we obtained many characterizations and conclude
some of its properties. It is proved that the endomorphism ring of a weak Baer module is a left weak Baer
ring. Also, we prove that a co-retractable module M is weak Baer if and only if every proper submodule of
M contained in a direct summand N %M of M . Also, We prove that a weak Baer module with no
infinite set of nonzero orthogonal idempotent in its endomorphism ring is precisely a Baer module. In
addition, a free module is weak Baer if and only if its endomorphism ring is left weak Baer.

Throughout this paper, R is associative ring with an unity element and M is an unital right R-
module. For a right R—module M, S =Endr(M) will denote the endomorphism ring of M . For
aeS, Ker(a) and Im(a) stand for the kernel and the image of o, respectively. Also, for any
nonempty subset | of S;

we denote of right annihilator of | in M by Ny (I)={m:meM; |I-m=0} and the right
annihilatorof | in S rg(lI)={a:a€S; |-a =0} Foranynonempty subset N of M , we denote of
right annihilator of N in R by

IR(N)={r:reR; N.r=0}
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and the left annihilator of N in S by Ag(N)={a:a €S; a(N)=0}.Forany element & of
aring R, we denote of left (right) annihilator of @ in R by
Ma)={x:xeR; xa=0}, r(a)={x:xeR; ax=0}

2. Weak Rickart Rings.

Recall that a ring R is a left (right) Ricakrt ring if for every @ € R, Ra=Re (aR=eR) for
some idempotent € € R, [S]. In this section we introduce and study the notion of right (left) weak Rickart
rings and investigate some of its properties. We start with the following Lemma:

Lemma 2.1. Forany ring R the following conditions are equivalent:

1- Forevery & € R with r(a) # O there exists a non-zero idempotent € € R such that € € r(a).
2- Forevery @ € R with r(a) # 0, a=ae forsomeidempotent 1 € € R.

3- Forevery @ € R with r(a) #0, Rac Rf where 1# f2=feR.

4- Forevery @€ R with r(a) #0, g =(1—a)g where 0 = g2 =geR.

5- Foreveryd € R withr(a) #0, eR = (1—a)R where 0 2 e* =e € R

Proof. Obvious.

We say that a ring R is a right weak Rickart ring if it satisfies the conditions of Lemma 2.1.
Similarly, we define a left weak Rickart ring. Also, we say thataring R is a weak Rickart ring if R is a right
and left weak Rickart ring. It is clear that every right (left) Rickart ring is a right (left) weak Rickart ring.
Also, we get the following characterization:

Lemma 2.2. Let R be a ring without non-zero nilpotent elements. Then the following conditions
are equivalent:

1- R isaweak Rickart ring.
2- R isaright weak Rickart ring.
3- R isaleftweak Rickart ring.
Proof. It is clear, because for a ring R without non-zero nilpotent elements I'(a) = A(a) for all

aeR.

A right orderQina ring R is a subring of R such that every element of R has the form ab‘l
forsome @,b € Q. Similarly, we define a left orderin R.
Lemma2.3.Let Q bea right orderin aring R. Then:
1- Iy (ab’l) = er ()R forevery a,b € Q.
2- |If Q is a right weak Rickart ring, then Risa right weak Rickart ring.
Proof. (1). Itis clear that b, (Q)R < I, (ab™).

Let c,d™ EI‘R(ab_l)where c,d €Q. Since Qis a right order ring in R, we can write
bc=ts forsome t,5€Q.Thent e rQ(a) and so
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cd ™t =bts™'d ™ ebry(a)R.

This shows that ry(ab™) < bry (@)R.
2).Let a,b™ eR, ry(ab™) # 0 where a,b € Q, by (1) we have
rr(ab™) =bry(a)R
and I'(@) # 0, so by assumption there exist an idempotent 02ee€Q suchthate e ro(a),

so beb_l e R isanonzero idempotent and

beb™ e bry(a)R =ry(ab™)
Theorem 2.4. Forevery R —module M with S = Endg (M) the following are equivalent:

1- S isaright weak Rickart ring.
2- Forevery @ € S with Ker(a) # 0, Ker(a) contains a nonzero direct summand of M .

3- Foreverya € S with Ker(a) # 0 there exist an idempotentl # g € S suchthat @ =g .
Proof. (1) = (2) . Letax € Swith Ker(«) #0, then there are g1,0, €S, g1 # g, such
that @Qq = Q5. This shows that I'g(a)#0 by (1) there exists an idempotent O#eeS,

eerg(a),so Im(e) < Ker(ar) and Im(e) # 0 is a direct summand of M .
(2)=@). et aeS with Ker(a)#0. Then by (2) e(M)c Ker(a) for some

2

e“=eeS.e#0.50 e =0 and @ = a(1l—€) where 1—€ # lis anidempotentof S .

B = (). Let €S, rg(ex) #0. Then ad =0=0for some 0~ A €S. This shows

that a is not monomorphism, by (3) a =a€ for some 1# e?=eeS. So a(l—e) =0where

1—e e Sisanonzeroidempotentof S andso 1—€ € I5 ().
Theorem 2.5. Forevery R —module M with S = Endg (M) the following are equivalent:

1- S isaleftweak Rickart ring.
2- Forevery @ € S with Im(a) # M, Im(«) contained in a direct summand K # M of M .

3- Forevery @ € S with Im(a) # M, a = o forsome idempotentl = g € S.

Proof. The proof follows dually to the Theorem 2.4.
@eS= EndR (M) If S is a right weak Rickart ring,

Lemma2.6.Llet M bean R —module,

then:
1- s monomorphism if and only if Ker(a) issmallin M .
If Im(l-a) is small in M ,then & is an unit.

2-
(<=). Assume that

Proof. (1) (=). Is obvious. Ker(a) #0 by Theorem 2.4

e(M) c Ker(«) for some 0 # e’ =eeS.Since Ker(a) issmallin M, (M) is smallin M so

e =0 acontradiction.
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(2).Suppose that IM(L—cx)is small in M . Since Ker(a) < Im(1l—«), Ker(a) is also
small in M so by (M ais monomorphism. On the other hand, M= m(a), because
M =Im(a)+ Im@l— ), thus « is an unit.

Lemma 2.7. Let M be an R —module, ¢ € S = EndR(M). If Sis a left weak Rickart ring,
then:

1-  aisan epimorphismif and only if IM(«)islargein M .
2- If Ker(l—a)islargein M, then s an unit.

Proof. The proof follows dually to the Lemma 2.6.

Let P be an projective R —module, 4 € S = Endy (P), itis well-known that the submodule
Im(A) issmallin P ifand only if the right ideal AS issmallin S [13, Proposition 1.1].

Also, if Q is an injective R —module and A € S = End (Q), then the sub-module Ker(4)
is large in Q if and only if the leftideal SAis smallin S [11, Proposition 1, P.102].

Corollary2.8.Let M bean R —module, @ € S = Endg (M). Then:

I —1f M is projective and S is a left weak Rickart ring, then the submodule I M() is large in
M if and only if the right ideal &S islargein S .

Il —1f M is injective and S is a right weak Rickart ring, then the submodule Ker(e) is smallin
M if and only if the leftideal Scxissmallin S .

Proof. () (=). Suppose that Im(c) islargein M , then by Lemma 2.7 & is an epimorphism.
Let | bea right ideal of S such that &S ™| =0. Since M is projective, for every A € | there exists
HES suchthat A=t €S ,s0 | €S .Thusl =aS M1 =0. This shows that &S is large in S

(«<). Suppose that I m(ex) is not large in M , then I m(cx) # M by Theorem 2.5 I m(«x)
contained in a direct summand N =M of M, so Im(a) = N =e(M) for some idempotent
1#eeS.Since M is projective, &S < €S . Thus

o5 (1-€)S =0

Since @S islargein S, (L—€)S =0 so & =1a contradiction. This implies that | M(cx) is large in
M . (I1) The proof follows dually to (1).

Lemma2.9.Llet M bean R —module, S = EndR(M )

I If Sisa right weak Rickart ring, then for every & € S, KGI‘(O{) # 0 the following holds:
1-  Im(1— ) contains a nonzero direct summand of M .
2- Ker(l—a) containedin adirect summand N = M of M .
1. If S is aleft weak Rickart ring, then forevery o € S, 1 m(a) #M the following holds:
1-  Im(l— @) contains a nonzero direct summand of M .
2- Ker(l— ) is contained in a direct summand N = M of M .

Proof. () Let ¢ € S, Ker(a) #0. By Theorem 2.4 & = XC where O € S isan idempotent and

o #1 since a(l—0)=0andl=a +(1—a),
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l-c=(01-0)l-a)1-0).
1- let g=(@0—a)l—0). Then QeSS is a nonzero idempotent element and

Im(g) < Im(— a) where Im(Q) # 0 is adirect summand of M .

2- let f =(l-0)(1—a).Then 0% f € Sisanidempotent and
Ker(l—a) c Ker(f)=Im(1-f)

wherel#1— f € Sisanidempotentandso, IM(L— f) # M isadirect summand of M .

Il — The proof follows dually to the (1).

Example. (1) Recall that an R —module M is regular [16], if for every M € M, m=mf (m)
forsome f € HOmg (M, R).If M is a regular module, then S = Endgr (M) is a right weak Rickart
ring. Because for every @ € S with Ker(ar) #0, Ker(a) contains a direct summand of M and by
Theorem 2.4, S is right weak Rickart.

(2) Call thataring R isan I g —ring [8] (Semi-potent ring [17]), if for every right (left) ideal of R
which not contained in the Jacobson radical J(R) of R, contains a nonzero idempotent. It is clear that
every |y —ring with zero Jacobson radical is a weak Rickart ring.

(3) Call that aring R is regular [7] if for every @ € R, a = axafor some X € R .Itis clear that

every regular ring is a weak Rickart ring.

3. Weak Rickart Modules.

Recall thatan R —module M is a Rickart module [6], if the right annihilatorin M of any signal
elementof S = Endg (M) is generated by an idempotent of S, equivalently, Iy () = Ker(«x) isa
directsummand of M forevery & € S . Note that:

Ker(a) =ny (@) =y (Sa).

Let MR beamoduleand S = Endg (M). We say thatamodule M is a weak Rickart module
if for @ € S withAg (Im(ax)) # 0, Ag (I M(x)) contains a nonzero idempotent of S . Similarly, we
say that a module M is a coweak Rickart module if for & € S with Iy, (@) # 0, Iy (@) contains a
nonzero direct summand of M . Itis clear that every Rickart module is coweak Rickart.

Corollary 3.1. For every R—module M with S =Endgr(M). Then the following statements
are equivalent:

1- The module M is coweak Rickart.
2- Foranya € Swith Ker(a) # 0, Ker(a) contains a nonzero direct summand of M .
3- Thering S is aright weak Rickart ring.

Proof. (1) < (2).1s obvious because Iy () = Ker(ex) forevery a € S.

(2) < (3).By Theorem 2.4.

Corollary 3.2. For every R—module M with S = Endg(M). Then the following statements

are equivalent:
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1- The module M is weak Rickart.

2- Forevery @ €S with Im(a) # M, Im(«) contained in a direct summand of K #M of
M.

3- Thering S is a left weak Rickart ring.

Proof. (1) < (2). Is obvious because Ag(IM(cx)) =Ag()forevery x€S. (2) < (3).
By Theorem 2.5.

Call that an R —module M is co-retractable [2], if for every proper sub-module N of M,
As(N)#0. Also, Call that an R —module M is retractable [2], if homg(M,N) #0 for every
submodule N #0 of M .

Let M bean R —module, S = EndR(M ) Following Wisbauer [14], a module M s called
semi-injective if forevery & € S, Sar = Ag (Ker(e)) . Also, amodule M is called semi-projective if for
every 2 €S,

oS =Homg (M, Im(x))

It is clear that if M is a semi-injective co-retractable module, then Ker(a) =0 if and only if
S =Saforevery @ € S . Also, if M is a semi-projective retractable module, then | m(ex) = M if and
onlyif &S =S forevery ¢ €S.

Proposition 3.3. Let M be a semi-injective co-retractable R —module. Then the following
statements are equivalent:

1- The module M is coweak Rickart.
2- Forany o € S with S # S, Ker(a) contains a nonzero direct summand of M .
3- Thering S is aright weak Rickart ring.

Proof. Is obvious by Corollary 3.1 and our assumption.

Proposition 3.4. Let M be a semi-projective retractable R —module. Then the following
statements are equivalent:

1- The module M is weak Rickart.
2- Foranya € Swith &S # S, | M() contained in a direct summand of K # M of M .
3- Thering S is aleft weak Rickart ring.

Proof. Is obvious by Corollary 3.2 and our assumption.

Let Mg beamoduleand S = Endg (M), suppose that

VS={a:aeS;Im@1-pa)=M; forall geS}

AS={a:aeS;Ker(1-apf)=0; forall S}

In [8], itis proved that J(S) < VS, J (S) c AS andif M is semi-projective,

J(S) = V'S [8, Lemma 3.2]. Also, if M is semi-injective, J(S) = AS [8, Lemma 3.7].

Proposition 3.5. Let M be a weak Rickart R —module, S = Endg (M) .The following hold:

1- Foreveryx €S, &V S, aS contains anonzero idempotent of S.
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2- If M is semi-projective, then S is semi-potent.

Proof. 1 — Let ¢ & VS , then there exists 0 € Ssuch that Im (1—ow) # M, by Corollary

32 Im(@Q-aoc)c Ker(e) for some idempotent OzxeeS. Since e(l—ao)=0,

oe = (oe)a(oe).Letg = ax(oe), then g is a nonzero idempotentof S and g = cx(o€) € &S.

2 — Follows from (1), hence J(S) = VS.
Proposition 3.6. Let M be a coweak Rickart R —module, S = EndR(I\/I). The following

hold:
1- Foreveryx €S, a ¢ AS , @S contains a nonzero idempotent of S .

2- If M is semi-injective, then Sis semi-potent.

Proof. The proof follows dually to the Proposition 2.4.

4. Weak Baer Rings and Modules.
We say that a ring Ris a right (left) weak Baer ring if for every nonempty subset| € R,

r(1) =0 (A(l) # O)there exists an idempotent 0 =€ € R such that e e r(l) (e € A(l)). Also, we
say thataring R is a weak Baer ring if Risa right and left weak Baer ring. Itis clear that every Baer ring is

aright (left) weak Baer ring.
Lemma4.1. For every ring R the following statements are equivalent:

1- R isaright (left) weak Baer ring.
2- For any nonempty subset J R, MJ)#R (r(J)#R) there exists an idempotent

1# f eRsuchthat (J) < Rf (r(J) < fR.
3- Forany nonempty subset | € R, I’(J) #0 (7\(|) # 0) there exists an idempotent 1=feR
suchthara=af (a= fa)forallael.

Proof. Is obvious.
Lemma4.2. For any ring R the following holds:

1- If R is aright (left) Rickart ring, then R is a left (right) weak Baer ring.

2- If R isaRickartring, then R is a weak Baer ring.
Proof. 1 — Assume that R is a right Rickart ring. Let | be a nonempty subset of R with

r(I)#0. Then la=0for some OaeR, by assumption A(@)=Re for some idempotent
1#zeeR. Since Mr(l))cMa)=Re, Mr(l))(1—e)=0 so 1—-eer(A(r(l))) =r(l) where

1—e e R isanonzero idempotent.

2 —Is obvious by (1).
Recall that an R —module M is a Baer module [12], if for every sub-module Nof M,

Ag (N) = Se for some e’ =eeS.We say thata module M is a weak Baer module
if for any submodule N of M with Ag(N) # 0, Ag(N) contains a nonzero idempotent of

S = Endr (M) .1t is clear that every Baer module is a weak Baer module.
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Lemma 4.3. Let M be an R —module, S = Endg(M). Then the following statements are
equivalent:
1- The module M is a weak Baer module.
2- For every submodule N of M with Ag (N) # Othere exists a direct summand My =M of M
suchthat N < M.
3- Forevery leftideal | of S with ry; (1) # M there exists a direct summand K # M of M such
that ry (1) < K.

Proof. (1) = (2).Let N be a submodule of M with Ag(N) #0, then e e Ag(N) for
some idempotent 0 2€e € S. Since (N) =0, N < Ker(e) and Ker(e) # M is a direct summand
of M .

(2) = (3) . Let | bealeftideal of S with ry; (1) = M . Since ry; (1) is a sub-module of M
such that Ag (ry (1)) # 0,soby (2) ry (1) < K for some direct summand K # M of M .

(3) = (1) .Let N be asubmodule of M with Ag (N) # 0. Since Ag (N) is a leftideal of S
and fy; (A (N)) = M ,soby (3) ryy (Ag(N)) < K for some direct summand K # M of M . Thus
v (As (N)) =e(M) where e:M — K the projection onto K. Since KM, 1#e e Sis an
idempotent and so

1—e e g (e) = ks (6(M)) ks (i (1 (N))) =25 (N)

where 1—e € S is a nonzero idempotent. This proves (3) = (1).

Proposition 4.4. Let M be a weak Baer R —module. Then S = Endgr (M) is a left weak Baer
ring.

Proof. Let | be a nonempty subset of S with Ag (1) # 0. Assume that N =2, Im(«)
then N is a submodule of M such thatAg (N) =Ag (1) # O by assumption € € Ag (N) =g (I) for
some idempotent O = € € S. Therefore S is a left weak Baer ring.

Theorem 4.5. Let M be a co-retractable R —module, S = Endg (M ). Then the following
statements are equivalent:

1- The module M is a weak Baer module.
2- Every submodule U # M of M , U containedinadirectsummand N #M of M .

Proof. (1) =(2). Let U =M be a submodules of M. Since M is co-retractable,
As(U) =0 by assumption there exists an idempotent 0% e €S such that e e Ag(U). Since
eU)=0,U < Ker(e) = Im@d—e), where Im(1—¢€) # M isadirect summand of M .

(2) = (1) . Let N be a submodule of M with Ag(N) =0, then N s M . By assumption
N < K for some direct summand K # M of M .Thus M = K @ K for some submodule K # 0
of M .Let 1M — K be the projection onto K, Then O =€ € S is idempotentand € € Ag(N),
because €(N) c e(K) =0.

Therefore M is a weak Baer module.
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Theorem 4.6. Let F be a right free R —module andS = Endg (F). Then the following
statements are equivalent:

1- F isaweak Baer module.
2- S isaleft weak Baer ring.

Proof. (1) = (2). By Proposition 4.4. (2) = (1). Let A be a submodule of F with
As(A)#0. Since F is free, A=2,c) IM(x) for some nonempty subset | of S. So
As (1) =2g(A) #0, by assumption Ag(l) contains a idempotent € € S, €% 0 thuse € Ag (A).
This shows that F is a weak Baer module.

Lemma 4.7. [10, Theorem 7.55] For every right R —module M, EndR(M) contains no
infinite set of nonzero orthogonal idempotent elements if and only if ENdr (M) has DCC on direct
summand leftideals if and only if M has ACC on direct summand.

Theorem 4.8. Let M be a right R —module, S = Endg (M) has no infinite set of orthogonal
idempotent elements. Then the following are equivalent:

1- M isaBaer module.
2- M isaweak Baer module.
3- M isaRickart module.

Proof. (1) = (2) . Is obvious. (2) = (1) . Let N be a submodule of M .1f A5 (N) =0, then
Ag (N) is a direct summand of S . Suppose that Ag (N) # 0, then by assumption Ag (N) contains a
nonzero idempotent of S . From Lemma 4.7, the hypothesis on S amounts to the fact that direct
summand of S satisfy DCC. Among all nonzero idempotent in Ag(N), choose € € Ag(N) with
S(—-e) =ig(e) =Ag(e(M)) minimal. We will prove that

A (N) kg (6(M)) =0
Suppose thatAg (N) NAg (€(M)) #0, then
2s (N (M) =g (N) g (€(M)) 0.

Since M is a weak Baer module, there exists a nonzero idempotent f €S such that
f g (N)AAg(E(M)),so f g (e(M)).

Since fe =0, e’=e+(1—e)f €S is a nonzero idempotent and e #e’. In addition,
e'e=¢,s0 €S c€'S . Thus

As () =1 (€'5) € s (€5) =25 (€)

which implies Ag(e'(M)) < Ag(e(M)). Moreover, Ag(e'(M)) = Ag(e(M)), because if
As(€'(M)) =Ag(e(M)), then f erg(e'(M)),so fe'=0 and f(1—€)f =0,ie. f=0a
contradiction. This contradicts the choice of €.

Finally, since € € Ag(N), Se = Ag (N).On the other hand, forany & € Ag(N),

a(l—€) = a—ae e g (N) Mg (€(M)) =0
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so @ =ae € Se, Thus Ag(N) = Se and so Ag(N) = Se. Therefor M is a Baer module.
(@) < (3) By [5, Theorem 4.5].

We say that a module M is a coweak Baer module if for any left ideal | of S =Endg(M)
with Iy (1) #0, ry (1) contains a nonzero direct summand of M . Itis clear that every Baer module
is cowek Baer. Recall that a module M is quasi-retractable [12], if homg (M, ry; (1)) # O for every
left ideal | of S=ENdg(M) such that ry; (I) # 0. Obviously, every retractable module is quasi-
retractable.

Theorem 4.9. Let M be a right R —module, S = Endg (M). Then the following statements
are equivalent:

1- M isacoweak Baer module.
2- Foreveryleftideal | of S with ry; (1) =0, | < Se forsomeidempotent 1€ e S.
3- Forevery submodule N of M with Ag(N) # S, Ag(N) < Sefor some idempotent 1= e € S

4

Aring S is aright weak Baer ringand M is a quasi-retractable module.

Proof. (1) = (2). Let| be a left ideal of S such that ry; (1) #0, by assumption ry (1)
contains a direct summand N #0 of M, so N =e(M)for some idempotent0#e &S . Since
Ncv(l);

| €2 (1 (1) € s (6(M)) =25 (€5) = S(L—€)

where 121—e € S is anidempotent.

(2) = (3).Is trivial, because Ag(N) isalefrideal of S with ry; (Ag(N)) = 0.

(3) = (4) . Let| beanonempty subset of S such that Ag (1) # S.Then iy (Ag(N)) =0

is a submodule of M andAg (fy (Ag(1))) # S, so by assumptionAg (1) = Se for some
idempotent 1~ € € S, because Ag (1) =Ag (fy (Ag (1)) . Therefore by Lemma 3.1, S is a right weak
Baer ring. Let J be a left ideal of S with Iy (J) # 0. Since Iy (J)is a submodule of M such that
As( (3)) =S, Ag(ry (3)) < SF forsome idempotent 1# f €S by (3). Thus:

Im(L— £) = Ker(f) < e Ker(af ) = fy (SF) = iy (hs (g (3)) = i (9)

so 01— f ehomg (M, ry (J)) . This shows that M is quasi-retractable.

(4)=(@). Lec | be a left ideal of S such that ry (1) #0, then by assumption
homg (M, ry (1)) 0. Thus Im(A)cry(l)= Npel Ker(p) for someO#AeS. Thus
@l =0 forevery @ e l,s0 1A =0 andso A e rg(l), this shows that g (1) # 0. Since S is a right
weak Baer ring, there exists an idempotent Oz#eeSsuch that eerg(l). So
Im(e) € Ny eg Ker(ar) =y (1) and Im(e) # 0 is a direct summand of M, this shows that M is

a coweak Baer module.

It is clear that every free module is retractable. From this fact and Theorem 4.9 the following is

derived:
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Corollary 4.10. A free module Fgis a coweak Baer module if and only if Endg (F) is a right
weak Baer ring.

Lemma 4.11. [1, Lemma 2.2] Let V and U be submodules of a projective module P. Then
P=V+U if and only if S =V +U where S= Endg (P) and V = homg (P,V),
U =homg (P,U).

Lemma 4.12. Every projective module Py # O with J(P) =0 is retractable.

Proof. Let A be a nonzero submodule of P, then there exists a maximal submodule M of P
such that Az M . By Lemma 411, L=a + [ for some «, S €S = Endr (P) and Im(a) < A,
IM(B) =M. It is clear that @ #0, because if @ =0, thenP =M a contradiction, so P is
retractable.

Using Theorem 4.9 and Lemma 4.12, we obtain the following result.

Corollary 4.13. A projective module Py # 0 with J(P) =0 is a coweak Baer module if and
only if Endg (P) is a right weak Baer ring.

5. Recommendations.
we recommend studying ring which the endomorphism ring of all modules above it is a weak and

co-weak Baer ring.
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