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Abstract: In this research article, we present the Green's function approach of ordinary differential equations with initial
and boundary conditions, we represented the differential equation by an integral equation. The text provides a sufficient
theoretical basis to understand Green’s function method, which is used to solve initial and boundary value problems
involving linear ODEs and PDEs. The main result the construction of a Mathematica Package valid to calculate the explicit
expression of the Green's function related to the two-point boundary value problem (2. 3), where the nth order linear

operator Ln defined on (2. 1) has constant coefficients.
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1. Introduction:

Consider a differential operator L of the following approach for initial and boundary value

problems of ordinary differential equations.

2

d_tz+ B(t)dit+ Ct)| u(t),a<t<b(1.1)

Lu(t) = [A(t)

Where A(t) is continuously differentiable, positive function. It adjoin operator M is defined as
(1)

2

Mv(t) = % [AD) v(®O)] — % [BO® v(®)] + COv(D),a<t<b (1.2)

Cdt

Consider the integral

b b
](vLu—qu)ds =j {v[Au'" +Bu' + Cu] —u[(Av)" — (Bv)' + Cv] } ds

b b b
=f (Avu" +Bvu') dt — f u(Av)'dt —I—f u(Bv)' dt (1.3)
a a a

Using integration by parts, we get

b b b
J u(Av)" = u(Av)'|b - j (Av) u'dt = u(Av)' |2 — (Av)u'|h - J (Av)u" dt
b b
f u( Bv)' dt = u(Bv) — f u' (Bv) dt

In such a case (1. 3) ® becomes

(1) C. Corduneanu. Integral Equations and Applications

(2) ). Kondo, Integral Equations
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b b
f(v Lu — uMv)dt = f (Auu' + Bvu')dt —
a a

b b
u(Av)' |k - A(v)u’l’,;—f (Av)u"'dt; | +u(Bv)|b — J u’ (Bv) dt

= —u(Av' + Av)|% + (Av)u'|2 + u(Bv)|}

= [A(vu' —uv") + uv(B — 4]}

Thatis

b
f(v Lu — uMv)dt = [ A(vu' —uwv') + uv(B — A)]2 (1.4)

Which is known as Green's formula for the operator.

2. Preliminaries:

. . . th . . .
In this section we study of the general two points n~ —order differential equatlon(3)

Lou(t) =0o(t),te JJU;(w)=h;i=1,..,n(2.1)
Where U (u) = Y124 ( au® (a) + g u® (b)), i=1,..,n(2.2)
And
Lu® = u™®) +a;OQu™ V@) + -+ a,_1(Ou' () + a,() u(t)t € t € J (2.3)
Being €€}, B} and by real consanisforalli = 1,...,nand j = 0,...,n — L and

o,a € ’y'l(], R) forallk =1, ...,n.

In this situation we look for solutions that belong to the space

(3) M.Rahman, Integral Equations and Their Applications
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wri()={ueg" 'R, u"VeAG}(24)

Definition (2-2): We say that g is a Green's function for problem (2. 1) — (2. 2) if it satisfies the

following properties @,

(gl) g is defined on the square J X J (exceptt = s if n =1).
ak
(gZ) Fork=0,1,..,n— 1, the partial derivatives atf exist and they are continuous onJ XJ.

(93) 2

n—1 n
_g and g . Exist and are continuous on the triangles @ < § < banda <
a1 atn
t<s<b.
(g4) For each s € (a, b), the function t = g(t,s) is a solution of the differential

equation
L,y=0a.e.on|a,s) U(s, b] .That is,

n n—-1

ad d
Fro gt s) + al(t)W gits)+ -+ an_lag(t, s)+a,(t)g(t,s) =0

forallt €]\ [s}(2.5)

(95) Foreacht € (@, b) there exist the lateral limits

n—1 n—-1 n—-1 n—-1

py= gt ,t) = 31 gt t) and 31 gt )= 31

g(t*t) (2.6)
and, moreover

gn-1 " gn-1 _ gn-1 _ gn-1 "
dtn—1 g(t !t) - Jtn—1 g(t,t ) = Jen—1 g(t ,t) _a n—1 g(t,t ) = 1(27)

t

6) For each s € (a,b), the function t — t,S) satisfies the boundary conditions
(g g ry
Ui(g(,8))=0,i=1,..,ni.e

(4) Alberto Cabada, Green's Functions in the Theory of Ordinary Differential Equations
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n-1 j j
z< a; at] g(t s) + ﬁ] v g(t S)>=0,i= 1,..,n(2.8)

=0

N~

Example (2-3) ©. Consider, for anym € IR, the second order initial value problem
u'(t) + mu(t) =o(t),u(0) =u'(0)=0
To obtain the Green's function we only need to solve the following problem
") +mr(t)=0,teRr(0)=01r(0)=1

It is immediate to verify that

l( sin(vmt)

Vm
r(t) = { tifm=0 (2.9)

| sin(v—mt)
=T

Jifm>0

Jifm<o0

So,since '(t) = g(t, 0), the expression of the Green's function is deduced from expression

gts)=gt—s+aa)ifa<s<t<bandg(ts) = 0otherwise

If we are interested in the periodic case,
u'()+mr(t)=0,teRr0)=r1),r0)=r(1)+1(2.10)

The expression of the Green's function is obtaining by solving problem
Lrt)=0,t€ J,rD() =rOb),,i=1,...,n—2,r®V(a) =r®D(p)+1

r"@®)+mr(t) =0,teRr0)=r1),,r0)=r1)+1(2.11)

Such equation has a unique solution given by

(5) V. D.S, eremet, Handbook of Green's functions and matrices
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( 1
cos (\/ﬁ(t—i)) _ yar
N Jifm=#4k°‘n“, k=0,1, ..
2Vm sinTm
r(t) =< 1 (2.12)
cosh (\/—m(t—i)) fm <0
— Jif m

L 2v=m sinh X2

2

Example (2-4) ©, Consider the second order operator Lyu(t) = u"(t) + t u'(t) + (sint) u(t),

Defined on the space D(L) ={u € w22 ([0,1], R),u’(O) = u’(l) =0}
In this case we have that

Lv(t) =v"(t) — (tv(t)) + (sint) v(t) = v"(t) — tv'(t) + (-1 + sint)v(t) (2.13)

The set of definition D(L*) of the adjoint operator consists of the functions ¥V €

w22 ([0,1], R) that satisfy the following equality forall it € D(L):

(tv(®) —v' (@) u(®) + v ®| _ = (tv(t) —v'®) u(®) + v ()] (2.14)
Due to the fact thatt € D (L) implies u'©® = u’(l), we conclude that the previous equality holds if and only if :

—v' (0) u(0) = (v(1) —v' (1)) u(1) for allu € D(L) (2.15)
Thatis
D(L") = {v e W22 ([0,1],R),v'(0) = v(1) —v' (1) = 0}
Notice that if, instead of the Neumann boundary conditions, we study the Dirichlet case
D(L) = {u € W?% ([0,1],R),u(0) = u'(1) = 0}

Then D(L*) = {v € W?? ([0,1],R),v'(0) = v(1) —v' (1) = 0}

For the periodic case

(6) V. D. S, eremet, Handbook of Green's functions and matrices.
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D(L) = {u € W?% ([0,1],R),u(0) = v'(1); u'(0) = u'(1) = 0} (2.16)

We conclude

D(LY) = {v e W*?([0,1],R),v'(0) = v(1) —v' (1)}
Proposition (2-5)": Assume 1. > 2 and thar @y, € R for all k € {1, ..., n}. suppose that the periodic boundary value problem:
Lult) =a(),te Ju®@ =u®b),i=1,..,n—1(2.17)
Has a unique solution for all @ € GT(J, R). Then the following property is fulfilled:
a_g (t,s) = — a_g (t,s), forallt,s €] (2.18)
at at

Proof: Suppose that function @ is differentiable. Let U be a solution of the considered periodic

problemu € G"(J,R)and v = u’isasolution of

L,v(t) =0d'(t),te ]
v®&(a) —v®D(b)=0,i=0,...n—2

v®D(q) — v®D(p) = g(a) — o(b)

Therefore, from the properties of the Green's function of the periodic problem shown in this

section, we deduce that

b
v(t) = f gt s)a'(s)ds+ g(t, a)(a(a) - a(b)) (2.19)

So, by integration by parts and form the fact that g(t, a) = g(t, b), we have that

b

ta 3
v(t) = g(t, b)a(b) — g(t, a)o(a) — f a—'Z(t, $)a(s) ds — f a—'Z(t, $)a(s) ds

bg
+g(t,a)(o(a) — o(b)) = - J a—‘z(t, s) a(s) ds (2.20)

On the other hand, using that 1 > 2, wededuce

(7) M. Renardy, R. C. Rogers, An introduction to partial differential equations
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, a t a (b ba
v(t) =u'(t) = o fag(t, s)a(s) ds + Eft g(t,s) o(s)ds = fa a—“t’(t, s) o(s) ds(2.21)
Since the differentiable functions are dense in gZ (J, R), we conclude that

G aG
E(tls) - - E(tis)#

Lemma (2-6)(8): Suppose that the general n" —order linear differential operator L1 defined in (2. 3) has constant coefficients. Then problem

(2.1) has a unique solution for every 0 € (gl [a, b], ]R) and hi eR,i=1,..,nifand only if problem

Lau(t) =6(t),te[c,d],U;(w) =h;i=1,..,n
Has a unique solution for every @ € (gl [a, b], R).

Moreover, denoting as the corresponding related g and g Green's functions, we have that the

following equality fulfilled

_ d—s\"' /b—-a b—a
forall (t,s) € [c,d] X [c,d] (2.22)

Proof: First note that & € (gl [a, b], R)ifand onlyifthereis 0 € (gI [a, b],R)

Suchthatd(t) = o (E (t—c)+ a) forallt e [c,d]

The first part of the proof follows form this fact and the direct verification that U is a solution of

(2.3)ifand only if

v(t) = (:__:)nu (Z:? (t—oc) +a),t€ [c,d] (2.23)

Satisfies that
L =&, telcd,U,w) =h,i=1,.,n

The second part of the proof is given by the following equalities for all £ € [C, d]

(8) M. Rahman, Integral Equations and Their Applications
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w0=(5=2) u (g=¢ c-a+a)

n

- (:—_D fabg (Z:f <t—c>+a,s)a(s) ds

= (:__:)n_lfdg (Z:: (t—c)+a,3:zl (r—c))a(s:: (t—c)+a>dr (2.24)

3. Main Result:

Sometimes the difficulty of the calculations to be made in the study of the Green's function
depends strongly on the extremes of the interval. In general it is easier to obtain the explicit expression of
the considered problem in, for instance, the intervals [0,1] or [0, 27T] than in the general one [a, b].
In the next result we show that if the linear operator L,, has constant coefficients, by means of a simple
change of variable, we can chose the interval where we can deal with. The arguments extend to the

general situation the case studied in [ 5, Lemma 2. 4]. To this end we define:

Lu®=u®+au™ Y0+ +a,,u®+a,u® tecd]

~ b-a\J i—1
Herea]-—a]- —),J=1..,n

d—c
and U;(w) = Y10(@ uP (o) + B} uP(d)),i=1,..,n
—i . h—a\"VT —; . h—a\"T . .
Witha;-=a]l-(d—_ocl) ,ﬂ}:ﬂ]’-(d—_z) J=1..n—-1i=1,..,n

Lemma (3-1) ©: Suppose that the general n"-order linear differential operator L,, defined in
(2.3) has constant coefficients. Then problem (2.1) has a unique solution for every

o el ([a,b],R) andh; € R,i =1, ..., nifand only if problem
Lau(t) =6(t),te[ad,U;(w)=h,i=1,..,n

Has a unique solution for every @ € g1 ([e,d], R).

Moreover, denoting as g and g the corresponding related Green's functions, we have that the

following equality is fulfilled

(9) P. Hartman, Ordinary differential equations
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n-1

g’(t,s)=(Z:Z) g(Z%(t—c)+aZ:Z(s—c)+a>

Forall (t,s) € [c,d] X [c,d].

Proof: Firstnote that&@ € J! ([, d], R), ifand onlyifthereisa € J ([a, b], R) such
that(t) = o (% (t—c)+ a) Forallt € [c,d]

The first part of the proof follows from this fact and the direct verification that U

Is a solution of (2. 1) if and only if

v(t) = (::Z)n u (% (t-) +a),t €lcd]

Satisfies

L) =50, telcd,U,w) =h,i=1,.,n
The second part of the proof is given by the following equalities forall £ € [c,d]

that

Lower and Upper Solutions"”
© (d—C)" <b—a(t " )
v = u —C a
b—a d—c

:(E)n f; 9 (E (t—c) +a,S) o (s)ds

:(ﬁ)n_l f:g(%(t—c)+a (r—c)+a)a(g(r—c)+a)dr

Conclusion:

By using the Green's function approach of ordinary differential equations with initial and

boundary conditions, and consider the nth order differential operator

dn dn—l dn—Z

d
L= dtn+an1dtn1+an2—d n2+ +a1d +a0

We want to find the general solution to the differential equation £ [x(t)] = f(t) Where the
forcing function f(t) wnsonatt = 0 i,e f(t) = 0 for t < 0. The general solution will be the
sum x(t) = xp(t) + Xp (t) where (@) xp(t) is a homogeneous solution, satisfying

(10) Y. A. Melnikov, M. Y. Melnikov, Green’s functions.
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Cacy

L [xp(t)] = 0, with arbitrary initial Xp(t) and its fist  — 1 derivatives at £ = 0 and
(ll) Xp (t) is a particular solution, satisfying

L [xp(®)] = f(t), with the initial conditions that xp(t) andits firstt — 1

derivativesatt = 0.

We will assume that we know how to solve for the general homogeneous solution xh(t).
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