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Abstract: An important type of basic functions named basis spline (B-spline) is provided a simpler approximate and more 

stable approach to solve problems in optimal control. Furthermore, it can be proved that with special knot sequence, the B-

spline basis are exactly Bernstein polynomials. The approximate technique is based on state variable is approximate as a 

linear combination of B-spline then anon linear optimization problem is obtained and the optimal coefficients are calculated 

using an iterative algorithm. Two different examples are tested using the proposed algorithm.  

Keywords: Basic spline, Bernstein polynomials, state parameterization algorithm, optimal control problems (OCPs).  

 دوال سبلاين الاساسية لمعلمات الحالة لأمثلية المسار

 لفيمها مصدق د

 سهى نجيب شهاب

 العراق || بغداد||  الجامعة التكنولوجية||  قسم العلوم التطبيقية

ساسية المهمة سلوب مستقر لحل مسائل في السيطرة المثلى بالاعتماد على نوع من الدوال ال أتم اقتراح تقريب مبسط و  الملخص:

ساسية هي بالضبط متعددات حدود بيرنشتاين مع دوال السبلاين ال أن  ذلك،  تم برهنةإلى  ضافةوالمسماة دوال سبلاين الساسية. إ

ساسية وتم سلوب التقريبي يعتمد على متغير الحالة حيث تم تقريبه كتقريب خطي من دوال السبلاين ال متسلسلة نقاط خاصة. ال 

 طبيق مثالين للخوارزمية المقترحة. مسألة غير خطية وتم حساب المعاملات باستخدام خوارزمية تكرارية. تم تإلى  تحويل المسألة

 سبلاين الساسية، متعددات حدود برنشتاين، خوارزمية معلمة الحالة، مسائل السيطرة المثلى. الكلمات المفتاحية:

1- Introduction 

The optimal control problem (OCP) is to obtain a control function that minimizes or maximizes 

known performance index governing by the system state equations together with the constraints. Their 

applications appear in many disciplines, economics, management, and engineering [1-3]. 

The basic OCP consists of three elements, first, the mathematical model of the controlled system 

that is either differential equation, integral equation of partial differential equation. Second, A set of 

boundary conditions concerning the value of the state system at initial time. Third, the performance index, 

which is minimized or maximized, is expressed mathematically in form of a scalar function.     

The following optimal control problems are considered in this work. The optimum performance 

index is  

https://doi.org/10.26389/AJSRP.S270519
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J = ∫ F(τ, x(τ), u(τ)dτ
1

0
                                                                                                    (1) 

Subject to the process illustrated by the differential equation on the time interval {0,1} 

u(τ) = f(τ, x(τ), x .(τ)                                                                                                            (2) 

with the initial condition  𝑥(0) = 𝛼                                                                                           (3) 

or boundary conditions   𝑥(0) = 𝛼      𝑥(1) = 𝛽                                                          (4) 

The OCP can be reduced to a mathematical programming problem using either parametrization 

or discretization techniques  to reduce the OCP to mathematical programming. 

The optimal control problems had been studied through many works [4-9]. Their exact solution is 

not always exists, so numerical algorithms is the way to solve them. Numerical approaches for treating 

(OCPs) are greatly vary in their techniques and complexity, for example, the method of successive 

approximations based on Pontryagin's maximum principle is described in [10]. In [11] both direct and 

indirect methods are used to solve a viral marking model with optimal control. The direct and indirect 

methods are also utilized for treating (OCP) in Growth theory in [12]. Further application of indirect 

method is in fluid flow which is control problem in a two dimensional [13]. Also an optimal control 

problem with time delayed is solved in [14] based on Pontryagin's maximum principle. Closed form 

approximate solution was adopted by [15] for solving linear quadratic (OCP) with the aid of pontryagin's 

maximum principle. In addition, estimate solution of Crip (OCP) is presented [16] based on Euler-

Lagrange conditions for more words on numerical solution of (OCPs) can be found in [17-19]. Basic spline 

functions are One of the popular basis functions which can be applied in many fields such as in solid state 

physics [20]. 

In this paper, two algorithms are considered to solve the problem described by Eqns. (1-4) based 

on B-spline functions to find an approximation solution to problem Eqns. 1 and 2 with the condition Eq. 3 

and the second algorithm is to solve problem Eqns. 1-2 with the boundary conditions Eq. 4. The (OCP) is 

then converted to non–linear optimizations problem using state parameterization technique. The basic 

spline or B-spline in the mathematical subfield of numerical analysis is a spline function that has minimal 

support with respect to a specified degree and in computer aided design as well as computer graphic the 

spline function are represented as linear combination of B-spline with a set of control points. The basic 

spline is generalization of Bernstein polynomials with specific control points. Bernstein polynomials are an 

important basis functions that can be utilized in approximate the solution in various areas of mathematics. 

2- The Goal and Organization of the Article 

The first purpose of this paper is to discuss the state parameterization and show how it can be 

utilized  in systematic way. The second purpose is to present the reformulation method of the optimal 

control problem into a mathematical  programming problem with the help of basic spline functions. The 

third purpose is to derive an explicit algorithm for  approximating the performance index.  
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For all of these objectives a  numerical method to solve the special optimal control problem, 

named linear quadratic optimal control problem (LQOCP), by directly converting it into a mathematical 

programming problem. To this end the state parameterization method is applied based on  the Bernstein  

polynomials or B-spline with specific control points, therefore the OCP is converted into a mathematical 

programming problem which can be solved simply . The advantages of this numerical method are: there is 

no need to integrate the system state; the OCP is converted into a small mathematical programming 

problem.  

The organization of this paper is: in section, the basic formulation of B-spline is described then the 

relationship between Bernstein polynomials and basic spline is devoted in section 3. Section 4 reports our 

methods by considering two algorithms and illustrates the accuracy of the proposed two algorithms by 

giving some examples in section 5. Some conclusions are listed in section 6. 

3- The Definition of Basic spline [21] 

Suppose that an infinite set of knots {𝜏𝑖} is prescribed as 

… < 𝜏−2 < 𝜏−1 < 𝜏0 < 𝜏1 < 𝜏2 < . ..                                                                                    (5) 

Then, the higher order of B-spline can be generating depending on the set of knots Eq. 5, in the 

following way  
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Particular cases for  the B-spline basic when 𝜏 = (𝜏0,𝜏1) that is 𝜏−3, 𝜏−2, 𝜏−1 tend  to word 

to 𝜏0 and 𝜏2, 𝜏3, 𝜏4 tend to word 𝜏1 if 𝜏0 = 0 and 𝜏1 = 1 then Eq. 6 will be 

, , 1 1, 1( ) ( ) (1 ) ( ) for  -k i 0 and k=1,2,3i n i n i nBs Bs Bs                                         (7) 

4- Reduction B-spline basis functions to Bernstein polynomials 

The basic spline is considered as generalization of Bernstein polynomials and they can be shared 

in most of their geometric and analytic properties. This fact is illustrated through this section. 

Consider the following parametric knot values 𝜏1 

0                                  1

                            1

1                                         
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where 𝜏𝜖{0, 1} and i ∈ {0, 2𝑛 + 1}, this means that  

0 1 2 1 2 1[          ] [0   0   0 0   1 1  1]n n n       L L L                                                        (8) 

Now, for 𝑛 = 1, one can obtain the first order B-spline using Eq. 6 
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with the aid of Eq. 8, we can get the knot points   𝜏0, 𝜏1, 𝜏2, 𝜏3 

[𝜏0  𝜏1  𝜏2  𝜏3] = [0    0    1   1 ]                                                                                 (9) 

Hence   
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Using Eq. 9 in  Eqns. 10 and 11, yields 

 𝐵01(𝜏) = 1 − 𝜏  and  𝐵11(𝜏) = 𝜏 

Therefore   0 10.1 1( ) ( )Bs                                                                                   (13) 

Eq. 13 represents Bernstein polynomials of the first order  

Similarly, one can prove that B-spline of nth order is Bernstein polynomials of order 𝑛 with the 

parametric knot points 

[𝜏0  𝜏1  𝜏2 …  𝜏𝑛+1] = [0    0    0 …  0 ]                                                                        (14) 

and [𝜏𝑛+2  𝜏𝑛+3 … 𝜏2𝑛  𝜏2𝑛+1] =   [1   1  …  1   1]                                                       (15) 

In this case the B-spline function can be written as: 
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which is Bernstein polynomials of order n and can be rewritten as  
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where  𝐵𝑖𝑛( ) = (
𝑛
𝑖

)  𝑖
(1 −  )𝑛−𝑖   0 ≤ 𝑖 ≤ 𝑛 

where  (
𝑛
𝑖

) =
𝑛!

𝑖!(𝑛−𝑖)!
    ∈ [0, 1) 

5- The Principle of the State Parameterization with B-spline 

The algorithm (𝑺𝑷 − 𝑩𝑺)𝟏 

To obtain an optimal performance value J(.) for problem (1-2) with Eq. 4, can follow  

These steps 

Step 1: choose ∈> 0 

Step 2: let n=1, put 𝑥1( ) = 𝑎0𝐵𝑠01( ) + 𝑎1𝐵𝑠11( ) 

where    𝑎0 =  𝑥0 =   𝑎𝑛𝑑  𝑎1 = 𝑥1 =   

𝑢1(𝜏) = 𝑓(𝜏, 𝑥1(𝜏), �̇�1(𝜏)) ,    set  σ1=   𝐽(𝑥1(. )) 

Step 3: set 𝑛 = 2,  𝑥2( ) = 𝑎0𝐵𝑠02(𝜏) + 𝑎1𝐵𝑠12(𝜏) + 𝑎2𝐵𝑠22(𝜏)    

where    𝑎0 =  𝑥0(0) and  𝑎1 = 𝑥1(1) 

  𝑢2(𝜏) = 𝑓(𝜏, 𝑥2(𝜏), �̇�2(𝜏)) ,    set  𝜎2=   𝐽(𝑥2(. )) 

Step 4: set 𝑛 ⟶  𝑛 + 2,  put x𝑛(𝜏) = 𝑎0𝐵𝑠0n(𝜏) + 𝑎1𝐵𝑠𝑛𝑛(𝜏) +

∑ 𝑎𝑘𝐵𝑠𝑛𝑘(𝜏)𝑛−1
𝑘=1  

where    𝑎0 =  𝑥0 𝑎𝑛𝑑  𝑎𝑛 = 𝑥1  

𝑢𝑛(𝜏) = 𝑓(𝜏, 𝑥𝑛(𝜏), �̇�𝑛(𝜏))   set 𝜎𝑛=   𝐽(x𝑛(. )) 

Step 5: If |σ𝑛 − σ𝑛−1| >∈ then go to step 3, otherwise , stop 

The algorithm (𝑺𝑷 − 𝑩𝑺)𝟐 

In order to solve problem (1-2) with Eq. 3, the following step3 are considered      

Step1: let 𝑛 = 1, state with approximate  𝑥1( ) = 𝑎0𝐵𝑠01( ) + 𝑎1𝐵𝑠11( ) 

where    𝑎0 =  𝑥0 =    

𝑢1(𝜏) = 𝑓(𝜏, 𝑥1(𝜏), �̇�1(𝜏))set   𝜎1=   𝐽(𝑥1(. )) 
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Step 3: set 𝑛 = 2, 𝑥2( ) = 𝑎0𝐵𝑠02(𝜏) + 𝑎1𝐵𝑠12(𝜏) + 𝑎2𝐵𝑠22(𝜏)  

where    𝑎0 =  𝑥0(0)  

𝑢2(𝜏) = 𝑓(𝜏, 𝑥2(𝜏), �̇�2(𝜏)), set  𝜎2=   𝐽(𝑥2(. )) 

Step 4: set 𝑛 ⟶  𝑛 + 2, put x𝑛(𝜏) = 𝑎0𝐵𝑠0n(𝜏) + 𝑎1𝐵𝑠𝑛𝑛(𝜏) +

∑ 𝑎𝑘𝐵𝑠𝑛𝑘(𝜏)𝑛−1
𝑘=1  

where    𝑎0 =  𝑥0  

𝑢𝑛(𝜏) = 𝑓(𝜏, 𝑥𝑛(𝜏), �̇�𝑛(𝜏))   set 𝜎𝑛=   𝐽(x𝑛(. )) 

Step 5: If |σ𝑛 − σ𝑛−1| >∈ then go to step 3, otherwise stop 

6- Application Examples 

The effectiveness properties of the proposed technique are illustrated through the following given 

example. 

Example (1)  

The proposed method in this example is applied to the following problem 

J= ∫ (𝑥(𝜏)2 + 𝑢(𝜏)2)𝑑𝑡
1

0
                                                                                                 (16) 

subject to 𝑢(𝜏) = �̇�(𝜏)                                                                                                             (17) 

and boundary conditions 𝑥(0) = 0, 𝑥(1) = 0.5                                                        (18) 

By using algorithm(SP − BS)1 an approximate solution x1(𝜏) is considered as initial 

approximation 𝑥1( ) = 𝑎0𝐵𝑠01( ) + 𝑎1𝐵𝑠11( )                                                             (19) 

Using the conditions in Eq. 18, one can get the parameters 𝑎0 and  𝑎1 as  𝑎0 = 0  and 𝑎1 =
1

2
 

Hence, 𝑥1( ) =
1

2
                                                                                                                      (20) 

Using Eq. 17 to get 𝑢1( ) =
1

2
                                                                                                     (21) 

Then put Eqns. 20 and 21 into Eq. 16, yields 

𝐽 = ∫ (
1

4
𝜏2 +

1

4
) 𝑑𝜏 = 0.333333                                             

1

0

 

The second approximation to 𝑥2( ), 𝑢2( )and the corresponding optimum value of 𝐽 is 

given by 

𝑥2( ) = 𝑎1 (2 − 2
2

) +
1

2
 2

 

𝑢2( ) = 2𝑎1-4𝑎1
 +   

J=
22𝑎1

2

15
−

17𝑎1

30
+

23

60
 

The value 𝑎1 =
17

88
 is minimize 𝐽, 

This leads to 𝐽 = 0.328598 
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The third approximation to 𝑥3( ), 𝑢3( )and the corresponding optimum value of 𝐽 is given 

by 

𝑥3( ) = (3𝑎1 − 3𝑎2 +
1

2
)  3

+ (3𝑎2 − 6𝑎1)
2

+ 3𝑎2
  

𝑢3( ) = (9𝑎1 − 9𝑎2 +
3

2
)  2

+ (6𝑎2 − 12𝑎1) + 3𝑎2 

J=
9𝑎1

2

7
+

51𝑎2𝑎1

70
−

4𝑎1

7
+

9𝑎2
2

7
−

29𝑎2
2

35
+

17

35
 

The value 𝑎1 =
202

1419
 

𝑎2 =
400

1419
 is minimize 𝐽, 

This leads to 𝐽 = 0.328259 

The above results can be compared with the following exact solution  

𝑥( ) = 𝐴 (𝑒


− 𝑒− ),   𝑢( ) = 𝐴(𝑒


+ 𝑒− )   

where A=
𝑒

2(𝑒2−1)
 

and  𝐽𝑒𝑥𝑎𝑐𝑡 = 0.3282588214 

By using algorithm(SP − BS)1 , the stopping criteria(|𝐽𝑛+1 − 𝐽𝑛| ≤ 1 × 10−6)  is 

satisfied after three iterations that is when n=3 and the value of the performance index 𝐽 = 0.328259 

is obtained. 

Example (2)  

The objective of the second problem is following quadratic optimal control problem  

min J=
1

2
∫ (𝑥(𝜏)2 + 𝑢(𝜏)2)𝑑𝑡

1

0
                                                                                 (22) 

subject to �̇�(𝜏) = 𝑥(𝜏) +   𝑢(𝜏)                                                                                  (23) 

with initial condition 𝑥(0) = 0                                                                                           (24) 

Here, Eqns. 23 and 24 with Eq. 22 is solved using algorithm(SP − BS)2, the results of 

approximate are summarized as follows   

𝑥1(𝜏)=(1- 𝜏)+ 𝑎1 𝜏 

𝑢1( ) = 𝑎1 (1 + 𝜏) – 𝜏 

𝐽(𝑎1) = 𝐽(0.25) = 0.25 
Second approximate 

𝑥2(𝜏) =(1-2 𝜏 + 𝜏2)+ 𝑎1(2 𝜏 − 2𝜏2) + 𝑎2𝜏2 

�̇�2(𝜏) =-2 + 2𝜏+ 𝑎1(2 − 4𝜏) + 2𝑎2𝜏 

𝑢2( ) = 𝜏2 − 2𝑎1 𝜏2 + 𝑎2𝜏2 − 1 + 2𝑎1 − 2𝑎1𝜏 + 2𝑎2 𝜏 

𝐽(𝑎1, 𝑎2,)=J(
70

187
,

53

187
)=0.194296  

Third approximate 
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𝑥3(𝜏) =(1-3 𝜏 + 3𝜏2 − 𝜏3)+ 𝑎1(3 𝜏 + 6𝜏2 − 3𝜏3) + 𝑎2(3𝜏2 − 3𝜏3) +

𝑎3𝜏3 
�̇�3(𝜏) = (-3 + 6𝜏 − 3𝜏2)+ 𝑎1(3 + 12𝜏 − 9𝜏2) + 𝑎2(6𝜏 − 9𝜏2) + 3𝑎3𝜏2 

𝑢3( ) =(-2 + 3𝜏 + 3𝜏3)+ 𝑎1(3 − 9 𝜏 + 3𝜏2 + 3𝜏3) + 𝑎2( 6 𝜏 − 6𝜏2 +

3𝜏3) + 𝑎3(𝜏3 + 3𝜏2) 

𝐽(𝑎1, 𝑎2,, 𝑎3)= 𝐽(
5589

10264
,

1957

5132
,

1447

5132
) = 0.192932 

The obtained approximated results can be compared with the following actual solution  

𝑥( ) = 0.010039 𝑒
22e 

+ 0.989961
22e 

,   

𝑢( ) = 0.010039(√2 + 1)𝑒
22e 

− 0.989961(√2 − 1)
22e 

,    

and  𝐽𝑒𝑥𝑎𝑐𝑡 = 0.192932 

By using algorithm(SP − BS)2 , the stopping criteria(|𝐽𝑛+1 − 𝐽𝑛| ≤ 1 × 10−6)  is 

satisfied after three iterations that is when n=3 and the value of the performance index 𝐽 =

0.192932is obtained. 

7- Conclusion 

An accurate algorithm for solving optimal control problem governed by ordinary differential 

equation with the both initial condition or boundary condition is proposed in this paper based on the state 

parameterization technique. The idea of this approach is to approximate the state variables by a basic 

spline functions and the control variables are determined from the state equations. Examples are included 

to confirm the efficiency of the algorithm The following points are concluded: 

- There is no need to integrate the system state equation. 

- Three is few number of unknown parameters 

- The system state and the conditions are satisfied directly. 
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