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Abstract: Cognitive Radios (CRs) improve spectrum efficiency by tracking users' movements using spectrum-aware devices. 

However, inadequate spectrum sensing can cause interference and incorrect detection. This paper explores cooperative 

spectrum sensing using OR-rule's detection performance in AWGN and Rayleigh fading channels, revealing that cooperative 

spectrum sensing only slightly improves detection in low signal-to-noise ratio situations. The authors propose an adaptive 

threshold method for CRN receivers, which outperforms fixed threshold approaches and reduces sensing errors in low SNR 

situations, highlighting the effectiveness of adaptive thresholds in improving CRN sensing performance  to improve detection 

efficiency. The study uses MATLAB to analyse the relationship between signal to noise ratio (SNR), detection probability, and 

false alarm probability. Results show that adaptive detection thresholds improve detection efficiency, especially in low SNR 

cases, addressing the issue of interference and enhancing detection accuracy. 

Keywords: Cognitive radio, cognitive cycle, signal-to-noise ratio, Receiver Operating Characteristic, probability of false alarm, 

software-defined radio. 

 

 الكشف التعاوني للطيف في بيئات تلاش ي رايلي والضجيج الأبيض الإضافي   تحسين

 كي لشبكات الراديو الإدرا
 

 2خالد حامد بلالالأستاذ الدكتور /  ، 1*ريان عبد العظيم حبوبم. 
 السودان  |جامعة كرري  1
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الإدراكية  المستخلص:   الراديو  تراعي  (  CRs) تعمل أجهزة  باستخدام أجهزة  تتبع حركات المستخدمين  الطيف من خلال  على تحسين كفاءة 

صحيحومع  .  الطيف غير  ا 
ً
واكتشاف  

ً
تداخلا يسبب  أن  يمكن  للطيف  الكافي  غير  الاستشعار  فإن  الاستشعار .  ذلك،  الورقة  هذه  تستكشف 

بقاعدة   الخاص  الكشف  أداء  باستخدام  للطيف  الخبو    ORالتعاوني  قنوات  التعاوني  Rayleighو  AWGNفي  الاستشعار  أن  يكشف  مما   ،

يقترح المؤلفون طريقة عتبة تكيفية . الاكتشاف في حالات انخفاض نسبة الإشارة إلى الضوضاءللطيف لا يعمل إلا بشكل طفيف على تحسين 

، والتي تتفوق في الأداء على أساليب العتبة الثابتة وتقلل من أخطاء الاستشعار في حالات انخفاض نسبة الإشارة إلى الضوضاء  CRNلمستقبلات  

(SNR)تحسين أداء استشعار    تكيفية في، مما يسلط الضوء على فعالية العتبات الCRN  تستخدم الدراسة  .  لتحسين كفاءة الكشفMATLAB  

الضوضاء   إلى  الإشارة  نسبة  بين  العلاقة  الكاذب(SNR)لتحليل  الإنذار  واحتمال  الكشف،  واحتمال  الكشف  .  ،  عتبات  أن  النتائج  وتظهر 

، مما يعالج مشكلة التداخل ويعزز  (SNR)الإشارة إلى الضوضاء    التكيفية تعمل على تحسين كفاءة الكشف، خاصة في حالات انخفاض نسبة

 .دقة الكشف
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1- Introduction: 

The need for spectrum to provide more wireless services is rising in tandem with the rapid expansion of wireless 

communication technology. However, a major hurdle to meeting the growing demand for spectrum is the limited availability of radio 

resources. In order to assess the efficacy of spectrum usage, the FCC conducted a poll that accounted for differences in both time and 

geographical region [1]. The results of the study make it quite clear that the allowed spectrum is now underutilized. By re-purposing 

underutilized licensed frequency segments, cognitive radio (CR) shows promise as a solution to the growing demand for spectrum. 

According to the FCC, a software-defined radio (SDR) is a type of radio that may change its maximum output power, frequency 

range, and modulation type through software changes, rather than modifying the hardware components that affect radio frequency 

emissions. 

Users are able to alter their broadcasts in real-time, unrestricted by technological limitations; this is the main idea of SDR. 

2- Literature Review: 

he need for spectrum to provide more wireless services is rising in tandem with the rapid expansion of wireless communication 

technology. However, a major hurdle to meeting the growing demand for spectrum is the limited availability of radio resources. In order 

to assess the efficacy of spectrum usage, the FCC conducted a poll that accounted for differences in both time and geographical 

region[1,2,3]. 

The capacity to adapt and learn from one's radio environment is what defines a CR radio. In order to increase spectrum use 

and provide flexible wireless access, it may change network properties [1]. To put it plainly, CR is a tool that can spot dangers. Acquiring 

effective exploitation of under-utilized spectrum's .There are four basic actions that are thought to be required for cognitive radio systems 

to have this capacity [2]. These tasks include spectrum sensing, decision-making, spectrum sharing, and spectrum mobility. Cognitive 

radio (CR) systems do initial spectrum sensing to discover any underutilized frequency bands. These frequency regions are sometimes 

referred to as white spaces or gaps in the spectrum [3]. 

 

Figure 1 cognitive cycle 

Upon identifying all feasible places, the spectrum decision-making approach will be employed to choose the white space most 

conducive to quick transmission. Spectrum sharing technology allocates and regulates frequency bands for many users, encompassing 

cognitive radio (CR) and secondary users (SUs). The spectrum relocation capabilities facilitate the transfer of a spectrum band from a 

secondary user (SU) to a primary user (PU) by transitioning to a more accessible white zone. 

It is possible that the intensity of muted or entirely silenced PU signals will alter unexpectedly.  

Related Works : 

several investigations have been conducted on several occasions, using numerous methods. Tags are quite important for 

ensuring the security of the user's words.The user's material contains the following citations: [4], [5].The author clearly failed to complete 
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their job because they neglected important details.When a secondary user relies on local spectrum sensing to identify a signal from a 

primary user, the secondary user may fail to detect the signal. The two most significant contributors to this issue are shadow and fading, 

which are inextricably linked. It is thought that using a combination of spectrum sensors might be one of the potential options. The 

employment of mixed band sensing technologies has resulted in considerable improvements in object localization [6, 7]. 

[7]shows that when the signal-to-noise ratio is low, simultaneous sensing does not significantly improve indication 

identification. This occurs when the ratio in question is low[8]. 

The key problems related to cooperative spectrum sensing (CSS) in Rayleigh fading and AWGN environments for cognitive radio 

networks: 

1. Impact of Rayleigh Fading 

• Signal Attenuation: Rayleigh fading causes significant variations in signal strength, making accurate detection of primary users 

(PUs) challenging. 

• Hidden Node Problem: Fading can result in some secondary users (SUs) failing to detect the PU’s presence, leading to missed 

detections. 

• Unreliable Sensing: Rapid changes in the fading environment can reduce the reliability of local spectrum sensing. 

2. Low Signal-to-Noise Ratio (SNR) 

• Weak PU Signals: In low SNR conditions, primary signals are often buried under noise, making detection more difficult. 

• Increased False Alarms: Noise can be mistaken for PU signals, leading to unnecessary interruptions in secondary transmissions. 

3. AWGN Impact 

• Interference from Noise: Additive white Gaussian noise affects sensing accuracy, particularly in environments with low SNR. 

• Threshold Selection: Determining the optimal detection threshold is challenging, as it must balance false alarms and missed 

detections under noisy conditions. 

4. Inefficient Fusion of Data 

• Diverse Channel Conditions: Cooperative sensing relies on combining data from multiple SUs, but channel conditions vary among 

users, complicating data fusion. 

• Communication Overhead: Sharing sensing data among SUs increases bandwidth usage and energy consumption, especially in 

noisy environments. 

5. Delay in Decision-Making 

• Slower Response Time: Cooperative sensing introduces latency as data from multiple users must be collected, transmitted, and 

processed. 

6.      Trade-Off Between Detection and False Alarm Rates 

• Competing Objectives: Improving detection rates often increases false alarms, while reducing false alarms may compromise 

detection accuracy. 

7. Resource Constraints 

• Power Consumption: Cooperative sensing requires significant energy, which can be a problem for battery-powered devices. 

• Hardware Limitations: Devices may lack the processing power to handle advanced sensing algorithms in real-time. 

The goal is to enhance sensing performance by reducing error rates and increasing detection reliability, even in challenging 

conditions like random fading or high noise levels. This can be achieved through various approaches: 

1. Enhanced Fusion Techniques: 

• Traditional Fusion Rules: Use conventional methods like OR Rule, AND Rule, or Majority Voting to process data from multiple 

sensors. 

• Improved Fusion Algorithms: Apply optimal algorithms such as Weighted Cooperative Sensing, which assigns weights to sensors 

based on signal quality. 
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2. Modeling and Adapting to Rayleigh Fading: 

• Employ precise mathematical models to represent the multipath Rayleigh fading environment accurately. 

• Use signal processing techniques like Diversity Reception or Equalization to mitigate the effects of fading. 

3. Minimizing Noise Impact (AWGN): 

• Implement algorithms to improve the signal-to-noise ratio (SNR), such as Noise Filtering techniques. 

• Develop algorithms that analyze the variance between signal and noise for better detection accuracy. 

4. Machine Learning and AI-Based Approaches: 

• Deep Learning Models: Use neural networks to identify patterns in noisy environments and enhance detection performance. 

• Reinforcement Learning: Optimize sensing strategies dynamically based on environmental feedback. 

5. Energy-Efficient Cooperative Sensing: 

• Design protocols to minimize energy consumption in cooperative sensing while maintaining high accuracy. 

• Optimize the number of cooperative sensors to balance resource usage and detection reliability. 

6. Hybrid Sensing Techniques: 

• Combine cooperative sensing with non-cooperative methods for improved performance in dynamic environments. 

• Integrate spectrum prediction models to anticipate spectrum availability and reduce sensing overhead. 

3- Methodology : 

1- The goals  and assumptions of this paper : 

The goals of this study is to look at the effectiveness of local and joint spectrum sensing in a range of radio scenarios, including 

those with AWGN and Rayleigh fading channels. Spectrum sensing, or more specifically energy detection, is used in this study due of its 

ease of implementation. Furthermore, in contrast to the usage of soft fusion solutions, the installation of a hard decision fusion approach 

that employs the OR-rule promotes cooperative sensing with minimal additional interaction. Particle swarm optimization was developed 

to improve the efficiency of combined spectrum sensing in conditions with a low signal-to-noise ratio (SNR). a threshold that may be 

changed was necessary. 

Energy sensors keep track of the frequency ranges prevalent in the nearby region. 

2- The  Importance of   this paper :Cognitive Radio Networks (CRNs) are designed to enhance spectrum utilization by allowing 

secondary users (SUs) to opportunistically access underutilized spectrum bands without interfering with primary users (PUs). 

Spectrum sensing is a critical functionality in CRNs to detect the presence of PUs. Improving cooperative spectrum sensing (CSS) in 

challenging environments like Rayleigh fading and AWGN (Additive White Gaussian Noise) is essential for several reasons: 

1. Mitigating Fading Effects 

• Rayleigh fading models the random variations in signal strength caused by multipath propagation in wireless environments. This 

can result in deep signal fades, making it difficult for individual nodes to reliably detect the PU’s signal. 

• Cooperative spectrum sensing helps mitigate these effects by aggregating observations from multiple SUs. Improving CSS ensures 

better handling of fading, reducing the likelihood of false alarms or missed detections. 

2. Enhancing Detection Accuracy 

• AWGN environments introduce noise that can degrade the performance of individual sensing nodes. CSS combines observations 

from multiple SUs, averaging out noise and improving the overall detection probability. 

• Optimized CSS algorithms (e.g., weighted fusion or machine-learning-based methods) further enhance accuracy by accounting 

for varying channel conditions and SU reliability. 

3. Maximizing Spectrum Utilization 

• Improved CSS ensures that spectrum opportunities are detected accurately and quickly, maximizing the spectrum’s availability 

for SUs. 

• This reduces the underutilization of the spectrum while avoiding interference with PUs, leading to more efficient spectrum usage. 

4. Reducing Energy Consumption 
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• Advanced CSS techniques minimize redundant sensing by optimizing the selection of cooperating nodes, leading to energy-

efficient operation in battery-constrained CRNs. 

• In fading and noisy environments, improving CSS can reduce unnecessary sensing cycles triggered by unreliable single-node 

detections. And  Improving Network Reliability and QoS 

Analytical and Statistical tools : 

- Energy detector-based local spectrum sensing 

The main user (PU) provides the initial data sample that is used in the process of constructing power consumption monitors. 

With the aid of Spectrum Utilization (SU), two inferences can be drawn from the dataset provided in the example. 

The initial assumption is that the central processing unit enters sleep mode. The processing equipment is now operating at 

peak efficiency. 

We previously explored both strategies for conveying the signal received by the i-th secondary user (SU). a number that is 

eight. 

The primary user receives the signal x(t), whereas the i-th secondary user receives the signal yi(t) as well as additive white 

Gaussian noise. The service's revenue has significantly increased.  

The energy of the received signal, represented by yi(t), may be used to determine which of the two hypotheses, 

H0: PU is idle. 

H1: PU is active. 
H0 or H1, is accurate. I really apologize, but the actual count is nine. 

𝑦1(𝑡) = {
ℎ𝑖(𝑡),       𝐻0

ℎ𝑖𝑥𝑖(𝑡) + 𝑛𝑖(𝑡),    𝐻1
 

An effective method for maintaining attention while doing an analysis The number of tests or selections is not difficult to 

calculate. According to reference [8], energy data was used to calculate Zi, which is a decision-making statistic. The following may be 

regarded a justification for the discovery of the i-th secondary user  

𝑍𝑖 =
1

2𝑤
+ ∑ (

𝑦2
𝑖𝐾

𝑁𝑜𝑊
)

2𝑇𝑊

𝑘=1
                   (2) 

Where (SU).𝑦𝑖,𝑗 =y(k/2w) and 𝑁𝑜 represents the power spectral density of noise that occurs only in one 

direction. Equation (3) shows the chi-square distribution for the i-th secondary user's choice statistic in order to calculate the quantity of 

energy. 

𝑍𝑖 {
𝑋2

2

𝑋2𝑚
2(2𝛾2)
 

|
    𝐻𝑜

     𝐻1
}                    (3) 

The number TW represents the letter M, m=TW . Within the boundaries of this debate, the energy analyzer's time-

bandwidth product is quite important. Consider the possibility that m is a real number to make the argument more obvious and correct. 

Equation 3 presents 𝑋2𝑚
2 its an alternate central chi-square distribution with 2m degrees of freedom, as stated before. Equation 4 

represents a mathematical expression  

 𝑋2𝑚
2(2𝛾2) for a non-centered chi-square distribution with 2m degrees of freedom. According to the alternative 

hypothesis H1, the noncentrality constant is responsible for the distribution's alteration. The noncentrality measure (i) may be used to 

calculate the signal-to-noise ratio at the i-th secondary user (SU).A precise count of nine. 

𝑃𝑓,𝑗 = 𝑃𝑟(𝑍𝑖 > 𝜆𝑖|𝐻𝑜) (4) 
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𝑃𝑑,𝑗 = 𝑃𝑟(𝑍𝑖 > 𝜆𝑖|𝐻1) (5) 

Let's go further into the problem of false alarms and the possibility of being detected 𝜆𝑖   by the i-th secondary user (SU). 

Equations (4) and (5) allow us to calculate the detection level of the i-th specified unit (SU). As a result, using Equations 3 and 4 from 

Reference [9] yields the precise mathematical equation defining the likelihood of detecting a signal over the Additive White Gaussian 

Noise (AWGN) channel. This equation can be interpreted as a mathematical expression 

.𝑃𝑑,𝑗 = 𝑄𝑚√2𝛾2 , √𝜆    (6) 

One definition of the Marcum Q-function 𝑄𝑚(a,b) is that the sum of A and B is equal to 7. 

𝑄𝑚(a,b)=
1

𝑎𝑚−1 ∫ 𝑥𝑚∞

𝑏
𝑒

𝑥2+𝑎2

2
|𝑚−1 (𝑎𝑥)𝑑𝑥   (7) 

 This definition is global. 

The mathematical formula (8) can be used to show the probability of missing a discovery. 

𝑃𝑚,𝑗 = 1 − 𝑃𝑑,𝑗 (8) 

The information presented in [9] can be used to estimate the probability of a false alarm occurring in an AWGN channel using 

Equations 3 and 5. 

𝑃𝑚,𝑗 =
𝛤(𝑚,

𝜆𝑖
2

)

𝛤(𝑚)
     (8) 

The number "(8)" is represented in text on the current page. For example, the sign 𝛤 (.) and 𝛤 (.,.) represents the 

gamma function, but the symbols (.,.) show the higher incomplete gamma function. Equation 9 remains same at all times, 𝛾𝑖  

irrespective of the channel's signal-to-noise ratio (SNR). Calculating the probability density function (PDF) , 𝑃𝑑,𝑖   by summing the 

values represented by dx is a method for determining the i-th secondary user in fading channels.  

𝑃𝑑,𝑗 = ∫ 𝑄𝑚(√2𝛾𝑖  , √𝜆) 𝑓𝛾𝑖
(𝑥) dx                   (9) 

The PDF value 𝑓𝛾𝑖
(𝑥) is determined using the fading model. However, Equation 9 states that any other element has the 

same likelihood of causing a false alert. This is the general consensus among specialists. There is a link between the transmission of a 

principal user (PU) signal via its surroundings and the development of multipath fading. The Rayleigh distribution [5] explains this trend, 

which is characterized by a decrease in the intensity of the main user signal. 

The exponential distribution(𝛾𝑖 ) may be used to calculate the probability of signal detection in a Rayleigh fading channel 

[9]. 

𝑃𝑑,𝑗 = 𝑒
𝜆𝑖
2 ∑ (

𝜆𝑖

2
)𝑘𝑚−2

𝐾=0 + (
1+𝛾𝑖

−

𝛾𝑖
−

)𝑚−1 ∗ (𝑒
𝜆𝑖

2(1+𝛾𝑖
−)

− 𝑒
𝜆𝑖
2  ∑ (

𝜆𝑖𝛾𝑖
−

2(1+𝛾𝑖
−

)𝑘𝑚−2
𝐾=0 )  (11)                           

Collaborative spectrum sensing  

Spectrum sensing is implemented by each SU to identify the presence of a PU signal. Based on the channel circumstances 

indicated by the appropriate noises and gains imposed, the signal intensity fluctuates at various times and locations when the PU signal 

experiences profound fading and shadowing.Five.  

Numerous decision fusion strategies have been proposed in the literature. ORrule, or the "one-out-of-N rule," is a widely 

recognized decision fusion strategy, where N represents the total number of cooperating SU[5].  
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In the hard decision fusion method, all collaborating SUs communicate their local sensory decisions to a shared fusion center 

for final decision fusion. If the PU is absent from all N participating SUs, a final decision corresponds to H0[9]. Conversely, if at least one 

out of N SUs indicates that the PU is present, a final decision corresponds to H1, the eleventh Using Qd, Qm, and Qf, respectively, one  

detection, and false alarm probabilities in cooperative spectrum sensing. The assumption that all may quantify the detection, missed  

decisions are autonomous underpins this  [:6 .]  

𝑄𝑑 = 1 − ∏ (1 − 𝑃𝑑,𝑗)𝑁
𝑖=1       (12) 

𝑄𝑚 = 1 − ∏ (1 − 𝑃𝑑,𝑗)𝑁
𝑖=1        (13) 

𝑄𝑓 = 1 − ∏ (1 − 𝑃𝑓,𝑗)𝑁
𝑖=1           (14) 

The combination of spectrum detection and adaptive thresholding results in  Collaboration is the defining trait of a 

cooperative, which is why it is so important.Through the use of spectral sensing, no significant findings were seen. In an environment 

with a low signal-to-noise ratio, we have improved the performance of the detecting system. This is being carried out in order to put an 

end to the problem [7]. Through the utilization of a cooperative spectrum sensing technique, this work works to determine the optimal 

detection threshold. It is possible for us to improve the likelihood of correct detections and decrease the risk of false alarms if we work 

together [15]. OR guidelines are used by a widespread fusion center in order to determine a definitive worldwide assessment of the 

availability of PUs. This is accomplished by comparing the approximated decision statistic of each SU to the optimum threshold [6]. 

Keeping the rates of false alarms and missed detections as low as possible is absolutely necessary in order to improve detection 

performance in an environment with a changeable signal-to-noise ratio [9]. The reason for this is that secondary users (SUs) can exploit 

the underutilized spectrum bands more efficiently when the likelihood of false alarms falls, while primary users (PUs) are safeguarded 

from excessive SU transmissions when the risk of missed detections diminishes. As a result, the decision threshold needs to be 

continuously adjusted in order to accommodate the two competing requirements that were indicated before for various channel 

circumstances. By reducing the total sensing error to its minimum, the entire Cognitive Radio Network performance target may be 

condensed into a single optimization issue, as described in [11].  

For the purpose of computing the chance of missed detection in the context of false alarms, how may a weighting constant 

that ranges from 0 to 1 be utilized? Given that the likelihood of a false warning is minimal and the likelihood of detection is high[12].The 

barrier must be restricted in some way. The limited possibility of a false alarm is defined by the range [0.001, 0.1] in this study. In order 

to mitigate the risk of false alarms[13], it is advisable to establish a maximal threshold for the likelihood of a false alarm. Moreover, a 

minimal restriction is enforced, as a very low probability of false alert indicates a very low potential for detection. Consequently, 

establishing a minimum probability of false alarm may assist in maintaining a reasonable likelihood of detection. The optimization issue 

is subsequently confronted with a new perspective.Fourteen 

𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜀(𝜆) 

 so   0.001<=pf<=0.1      (16). 

The Simulation Environment  
The simulation environment is configured as follows: 

Table 1 Simulation environment 

Parameters Values 

Time bandwidth factor 1000 

threshold - 

Number of samples 2000 

Number of cognitive radio uses 10 

Probability of false alarm Changed -From 0.01 to 1 (increament by 0.01) 
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The MATLAB simulation code was utilized to determine the correlation between the probability of missed detection (PMD) 

and the probability of false alarm (PFA) for the cooperative spectrum sensing technique. The link between the chance of detection and 

the signal-to-noise ratio in decibels has been incorporated. 

4- Results: 

After execution of simulation code the results explained in form of graphs as follows: 

 

Figure 2 :Exploring signal-to-noise ratio and detection probability: Additive White Gaussian Noise (AWGN) with 

complementary features and AND rule receiver operating characteristic (ROC) study of cooperative sensing.  
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Figure 3 :The relationship between the probability of detection and the probability of false alarm in the complementary ROC 

of the Rayleigh channel.  

 

Figure 5: In cooperative sensing using the AND rule under AWGN, the complementary ROC of detection probability and 

signal-to-noise ratio with 10 cognitive users is analyzed. 
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Figure 6: Detection Probability  vs  SNR at p_f =0.1 

Results Discussion: 

You can use equations 6, 7, 8, and 9 to figure out the chance of finding. to figure out how important it is in terms of signal-to-

noise ratio. In joint spectrum sensing, equations 12, 13, and 14 figure out the chances of detection (Qd), missed detection (Qm), and false 

warning (Qf). Equation 15 showed the ratio of the chances of not finding anything to the chances of finding something wrongly. We 

should try to get a low rate of false alarms and a high rate of recognition because of this negative connection. 

Higher SNR significantly improves detection probability.At very low SNR (e.g., -10 dB), the detection probability is poor, even 

with cooperative sensing 

Conclusion: 

This paper explores the OR-rule's detection performance in low signal-to-noise ratio (SNR) situations, focusing on cooperative 

and local spectrum sensing. It found that cooperative spectrum sensing only slightly improves detection performance in low SNR 

situations. The authors suggest that adaptive thresholds can improve CRN sensing performance under worse channel circumstances. 

Higher SNR improves detection performance but reduces noise and fading impact. Cooperative users significantly enhance spectrum 

sensing performance, while Rayleigh fading negatively impacts detection performance. The study suggests that optimizing system 

parameters to enhance SNR can significantly improve spectrum sensing. 
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