Journal of Engineering Sciences dwid| aglall e
and Information Technology ..@%éaii- Sloglall Lo g4isGg

Volume (6), Issue (4): 30 Jun 2022 AJSRP 2022 593 30 :(4) saall ((6) =l
P: 133 -150 ISSN: 2522- 3321 150 - 133 : o

Development of Energy- Efficient Load Balancing Scheduling Algorithm

in Real- time Systems

Youssef Mohammad Ntefeh

Mohammad Hijazieh

Faculty of Mechanical & Electrical Engineering || Tishreen University || Syria

Abstract: Real- time systems are considered as one of the most important topics that have attracted the attention of
researchers in various scientific and technical fields due to their widespread in many fields of communication, informatics,
operating systems and automatic control systems. The basic idea in real- time systems is the execution of a set of tasks that
are assigned to CPUs, within a time constraint associated with each of them, and this time constraint is called a deadline.
Task scheduling in real- time systems is the main factor in determining the success or failure of the system. Therefore, many
studies have imposed suggestions and hypotheses for improving scheduling, according to the underlined platform, whether
itis single- processor, multi- processor, or multi- core processor.

Researchers have recently focused on studying and providing solutions to scheduling problems, taking into account energy
consumption since energy consumption today plays an important role in determining the efficiency and reliability of the
system. Energy consumption can be saved either statically by turning the processor into sleep mode or dynamically by
changing the frequency of the processor cores and thus reducing power consumption. However, a slight increase in
frequency leads to executing more tasks in less time and thus can lead to an increase in the efficiency of the real- time
system by reducing tasks which may miss its deadline at the time of execution.

In this research, a new method has been proposed to control the processor frequency in an optimal manner that makes a

balanced trade- off between power consumption and execution of tasks in real- time systems.

Keywords: Multi- core Processor, Power Consumption, Aperiodic Tasks, Periodic Tasks, Processor frequency.

GArdad| el dalasi 3 ABUall 5800 Jomeld @315 ales Agua daylgs pskas

s [| a8 Bnal [] 2L 2SS i)l 3,8

cllzg aatlly Lualall ¥l Calise § ool alotal (£l Q1 puaolsll ol dsl il (ojll Lalail prad :paliiwll
Azl ll Aalas quladll Tl @Sl @lasy Judadll Aalaily Aloglally c¥las¥l c¥lrs § Rzl (o3l Aalast HLady
Sl azdl (£ Lae S Buals Buie) 3548 (rass Sildlae) Bl L) (10 Ao gazme dydis 9o

loie il (e dae auog Ui callaadl Jad of 7 lxi it § @uladl Joladl (2 admd) g3l dalasl § ald) Wounr
Slllall Bsaaie ol Gsill Boaate of Plall Lolal culS o) Jeadl Luail Lady guzdl ruces) byl

& poedl Lowsl 193 caals Ll i @B cPcal olewmlly 30T Adlal) (SLAL Jol 895 duslys e Al Silml) 5855
Ml Jolas (Sasg 038 > 3 Plall aungy BSLal 28U Saal Julas (Say Andsiges allall 2dlad gia dyaxs

DOI: https://doi.org/10.26389/AJSRP.C100222 (133) Available at: https://www.ajsrp.com

https://doi.org/10.26389/AJSRP.C100222
https://www.ajsrp.com/

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

2355 353 (6355 L=l (aay @ ABla)l gl (aassy deall wex Jdlas sy Axdlall oi 30,5 didany 4Sebpl! 231
Jolmts b @1 plll e Jelany plladdl 2dlad 3aL3) @otem Leo JBT (05 & pldl oo ST sute i)) Alagasy Bagdy Joad|
IROESE | AL (B [INES

Aalasl 3 alll duasg 8L Il o Lo ol3s3 4uliel Aasylay wlall ooy St Supus 3uas com Ll audy dulyudl sda 3
Azl a3l

Bl 53,5 e ¥ ales 90 ales BB el (aill suate Fllas e iall oLl

1- Introduction.

Real- time systems is distinguished from other systems by its commitment to strict time
requirements, meaning that the system performs the required tasks according to time restrictions
associated with each task, so that these restrictions should not be missed during execution, and therefore
the execution output is not considered feasible if the task is executed outside these restrictions. Such
systems are expected to be fast responding and guaranteed and a system is said to be in real- time if the
correctness of the overall response of a process depend not only on its logical correctness, but also on the
time frame in which it is executed. Real- time systems are categorized by their ability to miss deadline.
Accordingly, there are three types of real- time systems, Hard Real- Time System (HRTS): The real- time
system is hard when the execution of the task after deadline leads to a complete failure of the system even
if it is executed correctly but is delayed, such as brake system of a car. Firm Real- Time System (FRTS): It is
the system in which missing few deadlines does not cause a complete failure, but rather a degradation in
the performance of the system, but increasing the number of tasks missing their deadline will inevitably
lead to the failure of the system, such as the system of video calls or tracking by satellite. Soft Real- Time
System (SRTS): In this type of real- time system, the performance of the system decreases if the tasks do
not finish their work within their own deadline, the system won't fail, but rather leads to a delay in the

response, such as the task of bank transfers via the internet.

1-1 Research problem:

The research addresses two problems in the real- time systems. The first is the waste of processing
power in case of light load due to the lack of optimal exploit of energy in operating the system, due to
processor remains standby without performing any task. The second problem is the decrease in system

performance atthe expense ofa simp|e increase in processor power consumption‘

1-2 Research hypothesis:

1. Lightload in real- time systems leads to waste of energy consumption.

2. System overload in real- time systems will cause some tasks to miss their deadline.
3. Reducing processor frequency leads to reducing power consumption.
4

Processor Overclocking within boundaries won't cause hardware damage.

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (134) Ntefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

5. Particle swarm optimization algorithm could be used to find an optimal processor frequency to

balance real- time system load.

1-3 Research aims

The main objective of this research is to propose an optimal method to achieve a balance
between energy consumption and system throughput in real- time systems. The proposed method adjusts
the frequency of the processor cores so that it is possible to increase or decrease the frequency according
to the type, number and nature of the executed tasks. The proposed method will improve the performance
of real- time systems in such a manner that allows a larger number of tasks to be executed, even if it is at
the expense of increasing the frequency of the processor cores and thus increasing power consumption.
On the other hand, if there are a few tasks to be executed, then the method attends to reduce the
frequency of the processor cores and thus reduce power consumption, so in total this allows the real- time
system to operate for a longer period of time, especially when the system is running on platforms with

mobile power sources.

1-4 Research significance:

- Extending the processor lifespan of by reducing high frequency rates through minimizing system
overload.

- Reducing power consumption in portable devices.

- Improving real- time system performance when working on devices with constant power source.

- Adapting the operating system to the instantaneous changes in the load.

1-5 Research tools:

® SIMSO [5] is used to simulate the scheduling of real time tasks under different algorithms and

evaluate the performance and overheads of real- time system.

® Matlab is used to build the mathematical model for the scheduling algorithm, task sets and energy

COﬂSUIT]PtiOFI equations.

1-6 Background and related works:

A lot of studies regarding balancing load in real- time operating systems considering energy
efficiency and performance improvement have been carried out through the years in the real- time
scheduling policies. A number of Dynamic Voltage and Frequency Scaling (DVFS) strategies are
implemented and evaluated in terms of their performance and energy savings. Blocking Aware Based
Partitioning BABP algorithm has been designed in [10] to partition task set among cores to reduce overall
power consumption while avoiding a deadline miss compared to other partitioning strategies. A novel

predictive genetic algorithm based energy saving technique for task allocation has been proposed in [17],

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (133) Ntefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

where each processor operates within fixed power boundaries, taking into account the tasks’ inter-
dependencies, while [20] indicates that the genetic algorithm suffers from the lack of generalization in
scheduling to reach to an optimal solution thus combining it with other heuristics produce better results. A
voltage islands technique has been proposed in [16], which assigns each core to a specific voltage group
so that each group operates according to a specific energy level and assigns periodic tasks, according to
cores utilization, to the most appropriate core to execute. Donga [8] proposed a new reprioritization
method to solve the priority inversion problem and increase schedule ability through eliminating context
switching and hence improve system performance. In [24], the authors present an approach to calculate
the processor frequency which commensurate with the largest task within the task set then using the time
surplus to migrate some tasks from one core to another in order to achieve load balancing. [12] Aim at the
extending real- time system operating time when system powered by renewable energy source by
developing a new scheduling algorithm based on DVFS technique and task duplication strategy. The idea
of duplication is to schedule a task graph by mapping some tasks in the set redundantly to reduce the
communication between tasks. In [13], the researchers propose an energy efficient real- time scheduling
algorithm for reordering chunks in between deadlines and taking advantage of the utilization of the
processor to extend deadlines and lower processor frequency hence saving energy. [1] Propose a
scheduling technique commensurate with the required improvement. If the goal is to reduce response
time, then aperiodic tasks will be executed at full speed while periodic tasks migrates to other cores if their
deadline is earlier than aperiodic tasks. On the other hand, if the goal is to reduce energy consumption,
then aperiodic tasks will be executed with lower speed by identifying appropriate processor speed without
affecting the response time. In [18] scheduling scheme, namely, the energy- aware fault- tolerant dynamic
scheduling scheme (EFDTS), is developed to optimize resource utilization and reduce energy
consumption. A task classification method is proposed to partition the ready tasks into different classes
and then assign them to the most suitable processor based on their classes to minimize the response time
while considering energy consumption. Replication is used to minimize the task rejection ratio.
Furthermore, a migration policy is developed that can simultaneously improve resource utilization and
energy efficiency. A simulation tool (SIMSO) presented in [S] is designed for the understanding of real-
time scheduling algorithms and evaluate real- time system performance and overheads. SIMSO used by
many studies such as [3], [14], [4] and [7].

From all of these previous researches, it may be concluded that there is a need to have load
balance energy efficient method in case of light load or system overload without hardware modification or
neglecting any of the performance metrics. Our study proposes such a method to have optimum energy

consumption as well as optimum throughput.

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (136) Ntefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

1-7 Outline:

This paper is organized as follows: Section 2 defines types and classifications of scheduling in real-
time systems. Mathematical model of the LLREF scheduling algorithm is presented in section 3. Section 4
proposes the Energy- Efficient Load Balancing (EELB) method. Section 5 reviews the scenarios and results.

Finally, conclusions and future work are discussed in section 6

2- Scheduling in real- time systems:

The scheduler is the most important component in real- time systems and usually in the form of a
short- term task scheduler. The primary focus of this scheduler is on reducing the response time associated
with each task rather than dealing with a deadline.

Scheduling takes place after arranging all of the tasks that are ready for execution and the tasks
that were excluded from the processor during their execution without completing them as a result of the
arrival of another higher priority task within the task queue. Scheduling must ensure the completion of the
execution of each task within the deadline associated with it, taking into consideration task priorities. The
purpose of scheduling is to utilize most of the processor time without failures in the real- time system ® n
addition, scheduling should limit simultaneous access to system resources in order to reduce conflicts
between tasks and obtain a more efficient system, and make the scheduling process optimal. Scheduling

: . . : : . . 14
process is said to be non- optimal if the deadline is missed even for only one task. e

2-1. Classifications of task scheduling:

In the following section we review some general classifications of task scheduling. Scheduling in
real- time systems is divided in terms of the platform processors’ count into two parts: 03]

2.1.1 Uniprocessor scheduling:

The task queue is assigned to the single processor on the platform for scheduling.

2.1.2 Multiprocessor scheduling:

The task queue is assigned to be executed on all the processors on the platform. Scheduling on a
multiprocessor platform is divided into two parts:

a. Partitioned scheduling:

The task frame is divided into a set of sub- frames, each frame is will be scheduled on a single
processor in the platform, as if the multiprocessor platform had been replaced by a group of single-
processor platforms.

b. Global scheduling:

The task queue is distributed to all the platform processors at once in order to be executed so that

a task is selected and mapped to the unoccupied processor in the platform. Figure (1) shows the diffrence

between global and partitioned scheduling.

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (137) Ntefeh, Hijazieh

$2022 55530 gl a3md) = ko)) il shnal) it 555 Agentigh o lal) Al - a1 g stall g al) Alnal

Global Scheduling Partitioned Scheduling

Waiting Queue Fi? ‘

CPU1 CPU2 CPU3 CPU1 CPU2 CPU3

1000

Figure (1) Global and partitioned scheduling

On the other hand, there is a second classification of scheduling in terms of being done before
starting or during the system operation, as follows:

2.1.3 Static scheduling:

In this type of scheduling tasks arrival times should be well known by the system designer in
order to be scheduled optimally, so this scheduling is mostly applied to periodic tasks.

The tasks in this category are scheduled during compilation time, as shown in figure(2), so the
resulting overheads during the system operation in terms of switching between tasks, cache emptying and
resources obtaining are very few compared to the dynamic category. Low overheads are considered as
one of the features of this category. However, the inability of static scheduling to schedule sporadic and
aperiodic tasks, because it is hard to predict the arrival time of such tasks, constitute the most important

disadvantages of this category.

Tasks Queue

Y

v

Static scheduling

Running

Completed tasks

Figure (2) Static Scheduling
2.1.4 Dynamic scheduling:
Dynamic scheduling is the mechanism in which a task is scheduled by the scheduler at the

runtime.

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (138) Ntefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

The tasks in this category have different priorities. The priority is assigned to tasks during
execution according to the rules determined by the chosen scheduling algorithm. Dynamic scheduling is
faster and more efficient because the compilation time is small compared to the previous category (static)
therefore the system starts to run earlier. The ability to schedule sporadic tasks and aperiodic tasks is one
of the most important features of this category. However, there are many burdens facing dynamic
scheduling during operation in terms of context switching between tasks, cache emptying and resource
obtaining which can cause a greater delay due to the fact that the demand for these resources is done
dynamically during the system operation. This overhead considered the main disadvantages of this
category.

Based on the characteristics of each of the previous two categories, we can say that choosing any
of them when building a real- time system depends on the nature of the tasks in the system. Scheduling is
also divided in terms of tasks migration strategies into three types:

2.1.5 Partitioning migration scheduling:

When selecting a task to be executed on one of the processor cores on the platform, each
succession or repetition of the task, which is called "Job", at the beginning of each period will also be
executed on the same processor core.

2.1.6 Restricted migration scheduling:

When selecting a task to be executed on one of the processor cores on the platform, the rest “jobs”
of the current task can be executed either on the same processor core or on any other cores in the
processor. However, when the “job” begins execution, it will definitely complete its execution exclusively
on the current processor core.

2.1.7 Full migration scheduling:

When the “job” of a task begins executing on one of the processor cores, the job can complete its
execution on any other core if necessary as a result of job exclusion from execution for a reason related to
priorities. Full migration scheduling applies to all types of tasks. IRl

In terms of the nature of events, scheduling is classified into two categories:

2.1.8 Event driven scheduling:

The scheduler is called upon the arrival of a specific event in order to consider the status of the
existing tasks and determine the tasks that will be taken for execution from among the set of tasks in the
queue according to the preferences adopted by studied algorithm. This event can be the release of a new
task or termination of a specific task or any other event related to the scheduling algorithm type. Figure (3)
shows the difference between event driven and non- event driven scheduling in terms of response time.

2.1.9 Quantum driven scheduling:

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (139) Ntefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

The scheduler is invoked to make a scheduling decision when a certain period of time has passed.
The process is done periodically, and the length of the period depends on the nature of the tasks in the

queue, as well as on the nature of the processors on the platform.

{A) Response Time - 24 Partitions
1000

== EventDrwen
800r =l No Event Driven

Response Time (ms)

o

5 10 15 20 25
Reguest Rate {reg/sec)
Figure (3) Event Driven Scheduling

3- LLREF scheduling algorithm.

LLREF scheduling algorithm belongs to the dynamic type, i.e. it dynamically prioritizes tasks
during system execution. LLREF is also event- driven, meaning tasks rearranged when a specific event
occurs.

In terms of the nature of priorities assignment, LLREF scheduling algorithm is dynamic at the “job”
level, this means it is based on full migration strategy where the “job” of the current task can resume its
execution either on the same core on which it was started before being excluded due to priorities, or on
any other processor core on the platform. The events in this algorithm are divided into two parts, the main

events and the secondary events. The main events in this algorithm are:

® Task release event: It is the event of releasing a specific task and joining to the task queue which is

served by the processor cores on the platform.

® End of task execution event: It is the event of terminating the current task by one of the processor
cores, removing it from the task queue, and allowing a new task to enter the queue.

The secondary events in this algorithm are:

® Ceiling event (C): This event is triggered when there is no additional time left for execution, which
means the execution of the current task cannot be delayed so that it does not violate its time

constraint (miss the deadline).

® Bottom event (B): This event is triggered when the current task finishes the amount of work it has

to do during the TL- Plane (Time and Local Execution time Plane) which requires calling the

. . 22
scheduler exceptionally to schedule the tasks again and add a new task to the queue. (22]

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (140) Ntefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

3.1 Mathematical models of tasks in real- time systems:
The mathematical model of the tasks studied in this research can be formulated as follows:
Assuming that we have a queue of tasks (Q) containing a set of periodic (P), sporadic (S), and
aperiodic (A) tasks to be scheduled on a multi- core processor, then the model of periodic tasks can be
described as follows:

3.1.1 Periodic task model:

® Task arrival time (tp): It is the time at which an acknowledgment of a new event is issued on the
real- time system, where tasks are expected to arrive according to equal time periods. Periodic task

arrival time can be calculated by formula:

VP eQ = tp(n+1) =tp,(n) + 7t (1)
® [Execution time (Ep): It is the processing time that occupied by the task being executed on the
processor.
® Deadline (Dp): Itis the time during which a task must finish executing before reaching it.
Noting that the periodic tasks in this research have an implicit deadline as:
3.1.2 Sporadic task model:

® Taskarrival time (g): Itis the time at which an acknowledgment of a new event is issued in the real-
time system. In sporadic task model it is stipulated that no consecutive events for the same task may

occur at the same time. Sporadic task arrival time can be calculated by formula:
VS EQ = t(n)s#t(n+1)s (3)

® Execution time (E): It is the processing time that occupied by the task being executed on the

processor.

® Deadline (Ds): Itis the time during which a task must finish executing before reaching it.

® Number of sporadic task arrivals (Ns): Indicating the number of times the sporadic task was
released during the execution periodm.

3.1.3 Aperiodic task model:

® Task arrival time (y): Itis the time at which an acknowledgment of a new event is issued on the
real- time system, and unlike sporadic tasks, consecutive events for the same task can arrive with a
time difference greater than or equal to zero. Aperiodic task arrival time can be calculated by

formula:

VAEQR = t(n)y,<t(n+1),(4)

® Execution time (E4): It is the processing time that occupied by the task being executed on the

processor.

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (141) Ntefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

® Deadline (Dy): Itis the time during which a task must finish executing before reaching it.

® Random task arrival number (Ny): Indicating the number of times the random task was released

. . . ,lo
during the execution perlod[].

3.2 Multi- core processor model:
The processor studied in this paper is a multi- core processor that contains two, four or eight
cores, according to the studied scenario. These cores are identical, and each core has its own L1 cache

memory, and the cores share the second level of cache L2 cache memory.

3.4 Mathematical models of LLREF algorithm:
First, the algorithm calculates the laxity time for each task, which is the difference between the
deadline and the task actual execution time as defined by the formula:
vT:{P,S, A} €Q = Lr =Dr— E; (5
Where: (L7): Laxity time.
(Dr): Deadline.
(E'7): Execution time.

Then the algorithm sorts the tasks in ascending order according to the amount of laxity time (L_T).
The ordered tasks at the front of queue are mapped to the processor cores so that each task is assigned to
one core. Task execution continues until one of the following three events is triggered:

® Anincoming task has released.
® Bottom event.
® C(Ceilingevent.

When a new task released scheduler is then called to calculate the laxity time and reorder the
tasks. As for the event (B), it occurs when a task finishes execution, and therefore the scheduler is called in
order to make the scheduling decision again. The event (C) occurs when the amount of laxity time is zero,
which means:

Ly =Dy — Er =0(6)

The scheduler then called in order to make the scheduling decision and put such tasks into

execution; otherwise they will miss their time constraint (deadline).

The flowchart shown in Figure (4) describes how the LLREF algorithm works.

3.5 Power consumption model:

The total power consumed in the processor is defined as the sum of dynamic and static power as
follows:
P_dissTotal=P_Dynamic+ P_Static (6)
P_Dynamic=C.V"2.F (7)

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (142) Ntefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

V: processor voltage.
F: processor frequency.

C: proportionality constant.

P_Static=V.I_Leak (8)

I _Leak: leakage current. 21 19!

LLREF
Algorithm

!

Input: T:{P,54A} €Q

|

for VT:{P5A}€eqQ
Ly=D;— Ep

Sortm;ce‘nd (Q' L‘l"]

l

WV T:{ P,5, A} € Sorted (Q)
Assign (T.C)

l NO

ifE,=0or Ly =0

YES

call Scheduler

Figure (4) LLREF Algorithm

4- The proposed Energy- Efficient Load Balancing (EELB) method:

The main idea of proposed Energy- Efficient Load Balancing method is to adjust the frequency of
the processor cores in the multi- core processor so that it is possible to increase or decrease the frequency
according to the type, number and nature of the executed tasks. Accordingly, the proposed method will
improve the performance of real- time systems by either running it normally with less power consumption
in case of a light to medium load or allowing a greater number of tasks to be executed in case of system
overload. The proposed method calculates optimal frequency value via implementation of PSO (Particle
Swarm Optimization) algorithm. The PSO objective function is set to be the frequency value in case of

light to medium load or the number of failed tasks in case of system overload.

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (143) Ntefeh, Hijazieh

$2022 55530 gl a3md) = ko)) il shnal) it 555 Agentigh o lal) Al - a1 g stall g al) Alnal

5- Scenarios and results:

In the following section, we will review a set of proposed scenarios for applying the enhancement
approach to a set of periodic, sporadic, and aperiodic tasks using a multi- core processor, taking into
account the performance measurement criteria including context switching overheads, scheduling
overheads, number of failed tasks and power consumption.

Table (1) Parameters of light load scheduling scenario

Number of cores [2,4,8]

Number of tasks 20
Periodic tasks percentage 70 %
Sporadic tasks percentage 20 %
Aperiodic tasks percentage 10 %
L1 cache size [32, 64, 128] KB respectively
L2 cache size [512, 1024, 2048] KB respectively
Line size 16 Byte
Simulation time 5000 msec

5.1 Light load scenario:

In this scenario, the performance of the EELB method was compared with the default method in
terms of power consumption during light based on the data shown in the table (1).

Figure (5) shows the light load power consumption scenario results when working on two, four
and eight cores.
5.2 Context switching scenario:

In this scenario, the performance of the proposed method was compared with the default method
in terms of context switching overhead based on the data shown in the table (2).

Figure (6) shows context switching overheads scenario results when working on two, four and
eight cores.

Table (2) Parameters of scheduling overheads scenario

Number of cores [2,4,8]

Number of tasks 100
Periodic tasks percentage 70 %
Sporadic tasks percentage 20 %
Aperiodic tasks percentage 10 %
L1 cache size [32, 64, 128] KB respectively
L2 cache size [512, 1024, 2048] KB respectively
Line size 16 Byte
Simulation time 5000 msec

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (144) Ntefeh, Hijazieh

$2022 55530 gl a3md) = ko)) il shnal) it 555 Agentigh o lal) Al - a1 g stall g al) Alnal

Light load power consumption (\Watt)

30
25
20
15
10
5
0
2 Cores 4 Cores 8 Cores
m Default 26.851 20.66 18.95823529
= EELB 12.15 9.2 3

Figure (5) Light load power consumption scenario

Context switching overhead (us)

6000
5000
4000
3000
2000
0
2 Cores 4 Cores 8 Cores
m Default 1800 2700 5200
® EAS 1400 1500 3800

Figure (6) Context Switching Overheads Scenario

5.3 Scheduling overheads scenario:

In this scenario, the performance of the EELB method was compared with the Default method in
terms of scheduling overheads based on the data shown in the table(2).

Figure (7) shows scheduling overheads scenario results when working on two, four and eight

cores.

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (145) Ntefeh, Hijazieh

$2022 55530 gl a3md) = ko)) il shnal) it 555 Agentigh o lal) Al - a1 g stall g al) Alnal

Scheduling overheads (us)

5

4

3

2

1

0

2 Cores 4 Cores 8 Cores

m Default 3.9 3.8 4.2
m EAS 3.1 3 2.8

Figure (7) Scheduling overheads scenario

5.4 Number of failed task scenario:

In this scenario, the performance of the EELB method was compared with the default method in
terms of number of failed tasks based on the data shown in the table (2).

Figure (8) shows the number of failed task’s scenario results when working on two, four and eight

cores.

Number of failed tasks

12
10
8
6
4
2
0
2 Cores 4 Cores 8 Cores
m Default 11 8 5
m EAS 7 4 3

Figure (8) Number of failed tasks scenario

5.5 Power consumption scenario
In this scenario, the performance of the EELB method was compared with the Default method in
terms of power consumption based on the data shown in the table (2).

Figure (9) shows power consumption scenario results when working on two, four and eight cores.

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (146) Ntefeh, Hijazieh

82022 55553 & 38 - (pusbead) linal) - o lnal) i 15585 5 guail) Alina - o) i o gl A o) Al

Power consumption (watt)

40
35
30
25
20
15
10

o o1

2 Cores 4 Cores 8 Cores
m Default 31.2 324 32.8

= EAS 36.7 35.6 38.4

Figure (9) Power consumption scenario

5.6 Discussion.

After reviewing the results obtained in this research, we can point a number of conclusions, which

we can summarize in the following:

1-

The proposed EELB method reduced the impact of context (30- 40) %. This leads to improved
resource management and reducing its consumption as much as possible. A slight increase in the
processor frequency led to the speed of task execution and thus reducing the need to interrupt the
execution of tasks and its context switching.

The proposed EELB method reduced scheduling overheads by (12- 23) % due to fewer context
switches and thus reduces the need for making scheduling decisions.

The proposed EELB method contributed to reducing the number of tasks that may miss their
deadlines by (30- 45) %, and the largest percentage was when working on two cores, which
highlights the role of the proposed method in improving the performance of real- time systems
when working with fewer resources.

The proposed EELB method led to an increase in energy consumption by (8- 14) %, and this
increase is considered slight compared to the other benefits achieved at the level of the previous

three parameters.

6- Conclusion:

This work discussed real- time systems in terms of their types, classification and importance, then

the task scheduling in real- time systems was explained and their types and characteristics were reviewed.

The LLREF scheduling algorithm selected known to be the most energy efficient algorithm according to

[22] due to its simplicity and fast decision making. EELB method proposed in this paper aims to improve

Development of Energy- Efficient Load
Balancing Scheduling Algorithm in Real- time

(147) Ntefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

the LLREF scheduling algorithm in a way that balances between system load and energy consumption. It
depends on using PSO to find the optimal frequency value to achieve EELB goals the simulation results
illustrate that our algorithms made significant improvement when compared to default executing state.
We have shown via proof and simulation that power consumption reduced when load is light and system

performance increased when the system is overloaded.

6.1 Recommendations and future work:
The future work of this research would be, to develop the proposed method (EELB) and test it in
different working conditions, among which are:
1- Using another optimization algorithm.
2- The possibility to apply additional scenarios containing a different number of tasks and processor
cores.
3- Generate different utilization rates for the processor.
4- Testing the proposed method on processors with physical hardware that requires greater energy
consumption and studying the effect of the proposed method on improving energy consumption

when working on these platforms.

References.

[11 Al A, & Zakarya, M. (12 2020). POWER AND PERFORMANCE BASED HYBRID MULTIPROCESSING
FOR REAL- TIME SCHEDULING. doi:10.13140/RG.2.2.12494.28484

[2] Anjaria, K(18)., & Mishra, A. (2017). Thread scheduling using ant colony optimization: An intelligent
scheduling approach towards minimal information leakage. Karbala International Journal of Modern
Science, 3(4), 241—258. doi: 10.1016/j.kijoms.2017.08.003

[3] Ara, G, Cucinotta, T., & Mascitti, A. (2022). Simulating Execution Time and Power Consumption of
Real- Time Tasks on Embedded Platforms.

[4] Bertout, A, Forget,], & Olejnik, R. (10 2014). Minimizing a real- time task set through Task
Clustering. doi:10.1145/2659787.2659820

[5] Chéramy, M., Hladik, P.- E., & Déplanche, A.- M. (2014, Julie). SimSo: A Simulation Tool to Evaluate
Real- Time Multiprocessor Scheduling Algorithms. 5th International Workshop on Analysis Tools
and Methodologies for Embedded and Real- time Systems (WATERS), 6 p. Opgehaal van
https://hal.archives- ouvertes.fr/hal- 01052651

[6] Christine Niyizamwiyitira, Lars Lundberg, A Utilization- Based Schedulability Test of Real- Time
Systems Running on a Multiprocessor Virtual Machine, The Computer Journal, Volume 62, Issue 6,

June 2019, Pages 884—904, https://doi.org/10.1093/comjnl/bxz005

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (148) Ntefeh, Hijazieh

https://doi.org/10.1093/comjnl/bxz005

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Balancing Scheduling Algorithm in Real- time

De Bock, Y., Broeckhove, |., & Hellinckx, P. (2015). Hierarchical Real- Time Multi- core Scheduling
through Virtualization: A Survey. doi:10.1109/3PGCIC.2015.32

Donga, M. J., & Holia, M. S. (2021). A Hybrid Multiprocessor Scheduler for Soft Real- Time System
with Processor Affinity Concept. Journal of Physics: Conference Series, 2089(1), 012022.
doi:10.1088/1742- 6596/2089/1/012022

El Osta, R., Chetto, M., & El Ghor, H. (2021). An optimal energy aware aperiodic task server for
autonomous loT sensors. International Journal of Electrical and Computer Engineering Research,
102).

El Sayed, M. A, Saad, E. S. M., Aly, R. F., & Habashy, S. M. (2021). Energy- Efficient Task Partitioning
for Real- Time Scheduling on Multi- Core Platforms. Computers, 10(1), 10.
https://doi.org/10.3390/computers10010010

Funk, S., & Nanadur, V. (10 2009). LRE- TL: An Optimal Multiprocessor Scheduling Algorithm for
Sporadic Task Sets.

Ghonoodi, A. (2019). Green Energy- aware task scheduling using the DVFS technique in Cloud
Computing. Journal of Advances in Computer Research, 10(1), 1- 10.

Han, L., Canon, L.- C,, Liu, J., Robert, Y., & Vivien, F. (2019). Improved Energy- Aware Strategies for
Periodic Real- Time Tasks under Reliability Constraints. 2019 IEEE Real- Time Systems Symposium
(RTSS), 17—29. d0i:10.1109/RTSS46320.2019.00013

Hladik, P.- E. (04 2018). A brute- force schedulability analysis for formal model under logical
execution time assumption. 609—615. doi:10.1145/3167132.3167199

Levin (5), G., Funk, S., Sadowski, C., Pye, I, & Brandt, S. (2010). DP- FAIR: A Simple Model for
Understanding Optimal Multiprocessor Scheduling. 2010 22nd Euromicro Conference on Real- Time
Systems, 3—13. doi:10.1109/ECRTS.2010.34

Liu, Jun & Guo, Jinhua. (2015). Energy efficient scheduling of real- time tasks on multi- core
processors ~ with voltage islands. Future Generation = Computer Systems. 56.
10.1016/j.future.2015.06.003.

Mahmood, A, Khan, S., Albalooshi, F., & Awwad, N. (2017). Energy- Aware Real- Time Task
Scheduling in Multiprocessor Systems Using a Hybrid Genetic Algorithm. Electronics, 6(2), 40.
https://doi.org/10.3390/electronics6020040

Marahatta, A., Wang, Y., Zhang, F., Sangaiah, A. K., Tyagi, S. K., & Liu, Z. (2019). Energy- Aware Fault-
Tolerant Dynamic Task Scheduling Scheme for Virtualized Cloud Data Centers. Mob. Netw. Appl.,,
24(3),1063-1077. doi:10.1007/s11036- 018- 1062- 7

Peronaglio(15), F., Manacero, A,, Lobato, R., & Spolon, R. (04 2017). Modeling Real- Time Schedulers
for Use in Simulations Through a Graphical Interface. 10. d0i:10.22360/springsim.2017.anss.020

Development of Energy- Efficient Load (149) Nitefeh, Hijazieh

82022 55553 &) 2383 = Gasadl linall - o slaal) L o1 5585 § guntig) o gl Alia - a5 g o stall Ay el Alonal

[20] Pradhan, S., Sharma, S., Konar, D., & Sharma, K. (07 2015). A Comparative Study on Dynamic
Scheduling of Real- Time Tasks in Multiprocessor System using Genetic Algorithms. International
Journal of Computer Applications, 120, 975—8887. doi:10.5120/21340- 4346

[21] Priesmann, |, Nolting, L., Kockel, C. et al. Time series of useful energy consumption patterns for
energy system modeling. Sci Data 8, 148 (2021). https://doi.org/10.1038/s41597- 021- 00907- w

[22] Prifti, V., Balla, B., Zane, R, Fejzaj,)., & Tafa, I. (2014). A Comparison of Global EDF and LLREF
Scheduling Algorithms.

[23] Rihani(33), H. (2017). Many- Core Timing Analysis of Real- Time Systems (Université Grenoble
Alpes). Opgehaal van https://tel.archives- ouvertes.fr/tel- 01875711

[24] Wu, X,, Lin, Y., Han, J.-)., & Gaudiot, J.- L. (2010). Energy- Efficient Scheduling of Real- Time Periodic
Tasks in Multi- core Systems. In C. Ding, Z. Shao, & R. Zheng (Reds), Network and Parallel
Computing (bl 344—357). Berlin, Heidelberg: Springer Berlin Heidelberg.

Development of Energy- Efficient Load

Balancing Scheduling Algorithm in Real- time (150) Ntefeh, Hijazieh

https://doi.org/10.1038/s41597-021-00907-w

