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Abstract: In this work a theoretical investigation of the electronic properties of quasi-one dimensional semiconductor 

systems is presented. An approximately analytical self-consistent approach is used for the calculation of the energy 

subbands and electron density. The electron – impurity and electron – electron interaction potentials are calculated for a 

two subband model, for a cylindrical quantum wire. The analytical results for the electron –impurity and electron-electron 

interaction potentials are in good agreement with the results of the model calculations. With my analytical results I discuss 

various aspects of the electronic properties of semiconductors quantum well wires, such as the binding energy of shallow 

impurity, screening, intrasubband Plasmon, and the mobility.  
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I. Introduction 

Quantum well structures in which electrons have freedom of motion in two, one, and zero 

directions, are of great current interest as they promise faster, smaller and lower-power consuming 

devices(Weisbuch, C., Vinter, B., & Brennan, K. F., 1992). Devices based on structures permitting two-

dimensional (2D) motion are now fairly well developed and are even commercially available (Harrison, P. 

& Valavanis, A. 2016). Effort is also being made to realise devices using one-dimensional (1D) motion, 

which promise better properties. (Haug, H. & Koch, S. W. 2009). Fabrication of the so-called one-

dimensional (1D) or quantum wire structures have been reported (Gershoni, D. et al., 1988;Notomi, M. et 

al., 1991; PTsuchiya, M. et al., 1989). Electronic properties of quasi one-dimensional systems (Q1DS's) 

have been recently studied experimentally (Kallin, C., Leavens, C. & Taylor, R. 1988).Usually, quasi one-

dimensional structures are produced by an additional confinement of a two-dimensional electron gas as 

realized in silicon metal-oxide semiconductor structures or in AlxGa1-xAs/GaAs heterostructures. For 

realistic calculations of the subband structure in these systems, one must solve a two-dimensional 

Schrodinger equation and a two-dimensional Poisson equation, and only numerical results are available 

(Laux, S.E., Frank, D.F& Stern, F., 1988). Analytical structure of Q1DS's can be obtained for a cylinder of 

radius Ro with infinite barriers(Nag, B. & Gangopadhyay, S., 1993). However, the barrier potential is finite 

when the wire is surrounded by another semiconductor(Notomi, M. et al., 1991). An analytical solution of 

the equation for the envelope function is not possible for such wires with Cartesian geometry. When the 

https://scholar.google.com/citations?user=riGBTG0AAAAJ&hl=en&oi=sra
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barrier potential is infinite as in structures with free surfaces, analytical results for the energy subbands for 

cylindrical and rectangular wires can be obtained(Gold, A. & Ghazali, A., 1990). Even for these models the 

Fourier transform of the electron-electron interaction potential which plays a fundamental role for 

Plasmon, has mainly been given as numerical result (Kodama, T.& Osaka, Y., 1986).For the lowest 

subband and for a cylindrical wire, analytical results for the electron-impurity and electron-electron 

interaction potentials have been obtained with the approximation of constant electron density in the 

wire(Fishman, G., 1986). 

 In this paper I present analytical and numerical results for the energy subbands and electron 

density by an approximately self consistent calculation. Analytical and numerical results for electron –

impurity and electron-electron interaction potentials for two lowest subbands of a cylindrical wire is also 

presented .The good match of those analytical results with the numerical calculation has motivated us to 

study various electronic properties using the analytical results. I discuss the binding energy of shallow 

impurity states, the elementary calculation within the variational approach (Nag, B., & Gangopadhyay, S. 

1993). For this calculation I use the separable-potential approximation (Gold, A. & Ghazali, A. 1990). 

Mobility limits for charged-impurity scattering in Q1DES's have been calculated by (Fishman, G.,1986) 

within some more sophisticated models. These calculations will be discussed according to my analytical 

result for electron-impurity interaction potential.  

PROBLEM STATEMENT: 

Quantum structures, nanoscale layers, channels and boxes known as quantum wells, quantum 

wires and quantum dots turn the board energy bands of conventional semiconductors into more sharply 

defined energy levels(Harrison, P. 2016). That is a transformation which promises greater speed and 

efficiency for resulting circuits and optical devices (Burileanu, LM& Radu, A. 2011).. 

The basic principle behind quantum wells, wires and dots, is the same. Confine electrons in a 

restricted region of semiconductors by hemming it with another semiconductor that has a higher 

bandgap,a measure of the amount of energy that has to be pumped into the material to get electrons 

flowing. Electrons will naturally tend to flow in the confined region, where the bandgap is lower. In 

quantum wells, that region is often a 100Ǻ to 200Ǻ thick slice of semiconductor GaAs, built up by vapor 

deposition on a base of higher bandgap material AlGaAs. A second layer of AlGaAs closes the top. 

Confined in the slice, the electrons so have little space to move that their energy states are forced to cluster 

around specific peak (X Zhao, CM Wei, L Yang, MY Chou – 2004). 

Right now the fabrication of Quantum Well Wires look more promising as vehicles for studying 

the physics of confined electrons than as the basis of future technologies because they are complex and 

expensive to make . 
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THE OBJECTIVES :  

1- To introduce analytical expressions to use by researchers will certainly simplify the study of 

electronic properties of QWWs .  

2- To focus the attention of researchers that QWWs are important and form the basis of future 

technologies. 

METHODOLOGY 

Usually, quasi-one dimensional structures are produced by an additional one- dimensional 

confinement of a two- dimensional electron gas as realized in silicon metal oxide – semiconductor 

structures or in ALXGa1-xAs/GaAs heterostructures. (Aciksoz, E, Bayrak,O Soylu,A - Chinese Physics B, 

2016).  

In this work, I am interested in calculating the electronic structure of quantum well wires. For 

realistic calculations of the subband structure in these systems, one must solve a two – dimensional 

Schrodinger equation and a two dimensional Poisson equation, and mainly numerical results are 

available(Nag, B., & Gangopadhyay, S. 1993). Analytical results for the subband structure of quasi one –

dimensional electron systems can be obtained for a cylinder of radius Ro with infinite barrier and for a 

rectangular wire with sides L1 and L2 with infinite barriers. Similar calculation can be done with finite 

barriers.  

For my calculation of the subband structure in a cylindrical wire of radius Ro, I solve two 

dimensional Poisson equation and two dimensional Schrodinger equation in cylindrical coordinates in a 

self consistent manner. By solving Poisson's equation I obtain the self consistent potential to be 

substituted again into Schrodinger equation . The solution of the Schrodinger equation gives, the energy 

subbands as a function of the wire radius Ro and the electron density N for infinite and finite potential 

barrier models. The solution of Schrodinger equation without including the self consistent potential is a 

nonlinear equation in(E). I obtain also the wave function in terms of Bessel's function. The analytical self 

consistent solution for the energy subband is again a function of Ro and N as will be shown later(Nag, B., & 

Gangopadhyay, S. 1993). 

In the following sections the electronic properties of quasi one dimensional electron systems are 

studied by an approximately analytical self consistent solution of the Schrodinger and Poisson's equation. 

The binding energy for shallow impurity is calculated within the separable potential approximation (SPA). 

Analytical expression for electron –impurity interaction potential is also derived. Plasmons (Nozières, P., 

& Pines, D. 1999) . Mobility limits for charged impurity in quasi one dimensional electron systems have 

been discussed according to my analytical results for electron –impurity and electron-electron potentials. 

Finally I compare the results of infinite and finite potential barrier models. 
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II. DISCUSSION 

ІІI. ENERGY SUBBANDS:  

An approximately analytical self consistent calculation of the subband energies is presented by 

solving two dimensional Schrodinger equation and two dimensional Poisson equation. In my model the 

quasi one –dimensional structure is taken as a circular cylinder of radius Ro. Consider a finite barrier 

potential V(r) at r =Ro, for r <Rо (Vo= 0) and (Vo)for r>Ro .The motion of the electrons is restricted in the 

(r,θ) plane, while the motion in the z-direction is free. A constant electron mass is assumed, the boundary 

conditions on the wave function are that Ψ and its first derivative are continuous at the boundary. The 

solution of the corresponding Schrodinger equation expressed in term of ordinary J l (x) and modified 

Bessel function K
l

(x) (Gradshteyn,I.S.&Ryzhik, I.M.,1980). 
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For the first subband, after applying the boundary conditions we get, 
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Equation (4) is a non-linear equation, only numerical solution is available, with the parameters

10,4.57,5 ERyVaR oo

  is found to be equal to (3Ry*).The filling of the subbands introduces an 

additional potential which can be approximated as a Hartree term. If we assume that only the lowest 

subband occupied by electrons, the finite electron density gives rise to a potential Φ(r), which can be 

calculated by the Poisson equation: 
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where N is the one-dimensional electron density. 

From Eqs.(1) and (5) the Hartree potential can be found, then for r <Ro and r >Ro.  

The correction of the energy due to this potential is 

11 84.1 NE  ,                                                                            (6) 

where N is the electron density in the first subband. 

The first subband is, 
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E1= 3-1.84N1                                                                           (7) 

For the second subband by using Eq. (1) and the boundary conditions, we get, 
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Where 122 r  and 212 b  . 

Equation (8) is solved numerically, E₂₁ is found to be equal (6Ry*). 

The Hartree potential for r <Ro and r>Ro is calculated from Eq. (5). The correction to the energy 

due to Hartree term is given by, 212 57.232.2 NNE             (9) 

where N₂ is the electron density in the second subband. 

212 57.232.26 NNE   .                                                (10) 

The total electron density in the wire is, 

21 NNN                                                                     (11) 

The electron density in each subband is determined from Fermi Dirac distribution function and 

density of states for one-dimensional systems. It is given by, 
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Where EF is Fermi energy. 

Equations (7), (10), (11) and (14) is solved with the parameter N=(1.24)(1⁄a*) we get, N₁= 0.66(-

1⁄a*), N₂=0.58(1⁄a*),E₁=1.78 Ry* and EF=6.07 Ry*. The confining potential and energy subbands are 

shown in Figure (1). The researcher noticed that the finite confining potential reduces the energy 

subbands. 

Figure 1: The confining potential and the energy subbands for finite barrier potential 
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IV.SHALLOW IMPURITIES: 

Various electronic properties of the quasi one-dimensional structure are determined by the 

electron-impurity and the electron-electron potentials. I assume that charged impurities are randomly 

distributed on the surface of a cylinder with radius Ro. The interaction between point charges follows the 

Coulomb law. I introduce the Fourier transform for the z-direction with q as a one-dimensional wave 

vector. For a system with cylindrical symmetry, the interaction potential between an electron at r and an 

electron at r' is given by, 

V(r, r ',q) =  '2 2

rrqK
e

o

L




                                                               (15) 

Where Ko is the modified Bessel function of order zero. The effective interactions are weighted 

with the wave functions. The electron-impurity interaction potential for an impurity located at R=(R,θ) is 

given by(Gold, A. and Ghazali, A., 1990). 
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With Eqs. (2) and (11) the electron-impurity interaction potential can be obtained in analytical 

form, 
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Where α = r₁₀, Ro is the radius of the wire, R is the position of the impurity, Jo is the Bessel 

function of order zero and Io is the modified Bessel function of order zero. The binding energy of shallow 

impurities in a cylindrical quantum well wire is studied as a function of the impurity location with respect 

to the axis of the wire. The binding energy variation with respect to the electron density is also calculated. 

For these calculations I use the separable potential approximation (SPA). In the (SPA) the electron-

impurity interaction potential is written as, 
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Where C(d) is a numerical coefficient that depends on the dimensionality of the system. The 

binding energy (Eв) for shallow impurities for d=1 is given by the solution of the following equation, 
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where ε(q) is the static dielectric function. For screened impurity case, ε(q)= ε111(q)for the first 

subband which is derived from the dielectric tensor of a multi subband system (Ando, A. & Fowler, F., 

1989). 
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Where Xij is the generalized Lindhard function for wave vector q and frequency Ω. 

(in this case Ω=0), δij the Kronecker delta function. 
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where KF is Fermi wave number, KF = 
2

oN
, No is the electron density in the first subband, V

)(1111 qee  is the electron-electron interaction potential in the first subband, it is derived from the relation, 
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By using Eqs. (1) and (15) we obtain, 
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The binding energy of shallow impurities in two dimensional systems is strongly reduced by 

screening via unbound carrier. This behavior has been confirmed in the (SPA). With increasing electron 

density, the binding energy decreases and approaches a constant for large electron density. 

For QIDS's the screening effect on the binding energy of shallow impurity states has been 

calculated by (Kodama, T. & Osaka, Y., 1986) and recently by(ciksoz, E., Bayrak, O., Soylu, A, 2016). The 

binding energy first decreases and then increases again with increasing electron density. 

With the parameters R₀=5a* and N₀=0.66(1\a*), The binding energy versus electron density is 

shown in figure(2),with impurity located at the wire. The binding energy versus impurity position is 

shown in figure (3). I use this approach to calculate the binding energy because exactly solvable Coulomb 

model is not available and only numerical calculation for Eq. (19) is possible.(Montes, A., Duque, CA. 

1997). 
 

Figure 2: The binding energy versus electron density for finite barrier potential 
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Figure 3: The binding energy versus impurity position for finite barrier potential 

V. PLASOMONS 

The electron potential describes the screening properties of the wire, as shown in the previous 

section as an application of the electron-electron potential. I discuss in this section the collective excitation 

spectrum (Plasmons) for Q1DES΄s (.Brataas, A & Mal'shukov, AG 1996). Restriction to a two subband 

model (i =1,2) and the cylindrical symmetry implies that only four matrix elements of V
ijkl

 (q) are 

independent and different from zero. 
 

 ,1111 qV ee  ,2222 qV ee  ,1221 qV ee and  .1122 qV ee  

Moreover, the following relation hold: 

         qVqVqVqVqV eeeeeeeeee   21212112122122111122 ,  . 

I shall use Eq.(20) again, since I restrict my discussion to a two subband model, we have two 

collective modes given by, 

          0,1,1 121221111111   qXqVqXqV eeee                                          (25) 

A similar model has been discussed for two-dimensional systems(Sarma,S.D,1984). From Eq.(25) 

there are two collective modes, the first collective mode is the intrasubband Plasmon which is given by 

(Nozières, P. & Pines, D., 1999,  Goni, AR., Pinczuk, A, Weiner,JS Calleja, JM.,Dennis, BS 1991). 

0),()(1 111111   qXqV ee                                                                                               (26) 

Intrasubband Plasmon for one dimensional systems have been discussed in(Nozières, P. & Pines, 

D., 1999). In the following section I present some analytical result for the intrasubband Plasmon. 

The real part of X₁₁(q,Ω) determines the Plasmon dispersion, while the imaginary part 

determines the particle-hole excitation spectrum. The large frequency expansion of the Lindhard function 

for Q₁DES΄s is expressed as, 

https://scholar.google.com/citations?user=WaFhKNYAAAAJ&hl=en&oi=sra
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In the light of our analytical result Eq.(18) and the use of the following parameters Ro=1a*, 

No=0.57 (1/a*) and N=0.2 No. With )(1111 qV ee for qRo <<1, we get by using Eqs.(27) and(24) 
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with f1(q) = 0, 

Figure 4: Plasmon spectra for finite potential model . 
 

  2/1
)(/)1( qfqRqR ooo                                                              (31)  

In Figure (4) I show the intrasubband energy versus q/KF(solid line) according to Eq.(26) and the 

particle hole excitation spectrum versus q/KF. The dashed line Calculated according to Eq.(29). The dotted 

line represent Eq.(30a). 
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In Figure (4) I show the intrasubband energy versus q/KF (solid line) according to Eq.(26) and the 

particle hole excitation spectrum versus q/KF. The dashed line calculated according to Eq.(29). The dotted 

line represent Eq.(30a). 

VI. MOBILITY 

A. General Framework 

The inverse momentum-relaxation time for zero frequency, zero temperature, and for the lowest 

subband is given by,(Gold, A. and Gotze, A.,1986) 
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here, ‹|U(q)|²› is the average squared Fourier transform of the random potential.  

FG  (q,Ω) is the density-density relaxation function of the non-interacting electron gas. (FG) 

means free gas). And ε(q) is the static dielectric function for the lowest subband. Following the results of 

(Sarma, S.D., 1984) FG is given by, 
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F is the density of the states of the free electron gas at the Fermi energy (EF), 
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From Eqs.(32),(33) and (34) we get, 
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The mobility in a one-dimensional system can be written as, 

μ = 
m

e )0(
                                                                                             (36) 

For one-dimensional systems, ε(q,T) diverges for q=2kF and temperature T=0. 

According to Eqs.(35) and (36), the mobility would go to infinity. However, at finite Temperature 

T, ε(q=2kF, T>0) is finite and, can be expressed by (Fishman, G., 1986) . 
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kB is Boltzmann constant. I have introduced the local field correction described by G(q=2kF) in 

Eqs.(5), (6) with the use of Hubbard's approximation. For QIDES's G(q) is expressed as, G(q)=
2/1
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Eqs.(36)-(37) define the mobility of QIDES's in the lowest order Born approximation for 

unspecified random potential. 

In the following I discuss the mobility limits for remote impurity doping and Homogeneous-

background doping. 

B. Remote-Impurity Doping 

We assume that, impurities are randomly distributed on a cylinder with radius R. The random 

potential for remote doping (RD) is expressed as, 

   211
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Ni is the one dimensional impurity density. The mobility is given by, 
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For GaAs wire with a*=100 A° and gv =1, the prefactor in Eq.(40) becomes, 

sV
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h
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The calculated mobility for remote-impurity doping versus electron density is shown in figures 

.(5),(6) The impurity density is fixed at Ni=
16101 cmx . With increasing electron density the mobility 

increases due to the weaker electron-impurity interaction. With increasing (R) the density dependence of 

the mobility increases due to strong decrease of the electron-impurity potential. Numerical results for 

mobility of QIDES's for impurity scattering have been presented (Weng,Y. & Leburton,J.P., 1989). 
 

N (106 / cm) 

Figure 5: The mobility versus electron density for remote impurity doping (R>R) 
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Figure 6: The mobility versus electron density for remote impurity doping(R=4Ro) 

C. Homogeneous-Background Doping 

For homogeneous-Background (B) doping we consider two cases. For cases 1(B1), impurities are 

homogeneously distributed in the wire (0<R<Ro). The three dimensional impurity density is Nв₁. 

For case 2 (B2) the impurities are homogeneously distributed outside the wire (R>Ro). The three 

dimensional impurity density is Nв2. 

The random potential is defined as, 
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The random potential by using Eqs. (41), (42) is given by, 
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For R<Ro , 
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The mobility for homogeneous background doping is expressed as, 
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The mobility versus electron density for cases 1 and 2 is shown in Figs.(6), (7), with the 

parameters, R o =1a*,N=N
2

2

)2(1

o

BB

R
,kBT=0.02 Ry*. For N>1 × 10⁵ cmˉ¹ . 

he result are consistent with the condition T<E F , in Eq.(37).  

 

Figure 7: The mobility versus electron density for homogeneous background doping(R>Ro) 
 

 

 

 

Figure 8: The mobility versus electron density for homogeneous background doping(R<Ro) 
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CONCLUSION 

We have calculated the energy subbands, electron density and Fermi energy for finite potential 

barrier models. My analytical result is derived within an approximately self consistent approach. The 

results for finite barrier model are compared with the results of the infinite barrier model. The finite 

confining potential reduces the subband energies in comparison to the energies in the infinite barrier 

approximation. I conclude that my model is reasonable and in agreement with numerical calculations. For 

variational calculations of shallow impurities, wires of circular cross section were chosen to minimize the 

expected numerical integrations; also it is thought that this shape would best approximate a real wire. 

However, in this quantum size limit the cross-sectional shape should not significantly affect the wire's 

characteristics, because the carriers are then confined to move in essentially a single dimension. It is 

assumed that the wire is sufficiently long and that motion along the wire's axis of symmetry is free; i.e. the 

confining potential is a function only of a radial co- ordinate. Analytical results for the electron-impurity 

and electron-electron interaction potentials and for band bending for quasi one dimensional electron 

systems in a cylindrical semiconductor quantum wire have been presented. I have demonstrated that 

these analytical results are useful for the calculation of electronic properties.  

I have discussed shallow impurities and the effect of screening on the binding energy of shallow 

impurity. I have seen that the binding energy decreases as the electron density increases till it reaches a 

minimum value and then increases again, and this result is in very good agreement with (Gold, A. and 

Ghazali, A., 1990) for the infinite potential model. The binding energy as function of impurity position 

with respect to the wire axis, and it is in a very good agreement with (Gold, A. and Ghazali, A., 1990).  

Plasmon excitation is also discussed for infinite and finite potential models .My result is derived 

by the use of my analytical form of the electron-electron interaction potential, for finite potential model, it 

is in agreement with the infinite model case. 

But my results are slightly bigger, especially for the Plasmon dispersion. My analytical result for 

electron –electron interaction potential for finite model differs by a factor of (2) in the logarithmic term 

compared to the expression of (Gold, A. and Ghazali, A., 1990) for infinite model. 

The calculated mobility with the inclusion of Hubbard's local field correction to the random phase 

approximation is smaller than the mobility calculated by(Friesen, W.I. and Bergersen, B.,1980), especially 

for R<R0. This is due to my larger electron-impurity potential. For R>R0 . It is in agreement with)Gold, A.and 

Ghazali, A., 1990) . 

The further use of the analytical expressions derived in this work by other researchers will 

certainly simplify the study of electronic properties of QWWs. 

Since I am more interested in simple analytical expressions for the dielectric function, I do not 

review the situation with computer simulation or numerical work. For developments in this direction the 

reader is referred to (Tanatar B.,1994) and references there in . 
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If one tries to improve the analytical solution of the Hartree potential, one runs into problems in 

the solution of the Schrodinger equation. This is why I have resorted to a perturbation theory type of 

calculation in the present study.  

This matter is further complicated if one includes the exchange-correlation part of the potential 

into the Schrodinger equation. I may conclude that the most agreeable approach to the self- consistency 

problem, at present, is a variational calculation which includes a minimum amount of numerical work. 
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ًلن هره دزاست هظسيت للخصائص الإ :الملخص
ً
. استخدم ههج جحليلي متىاسق جقسيبا

ً
 روهيت لىظم شبه مىصلت ذاث بعد واحد جقسيبا

رون لجهد جفاعلي لىمىذج هطاقي إلن  -رون إلن وً شىائب –رون إلن ت. جم استعمال يروهلن طاقت الفسعيت والنثافت الإلحساب هطاقاث ال

تىافق مع هتائج رون للجهد التفاعلي جإلن  –رون إلن شىائب وً –ونرلن للإ الطاقت، لسلك اسطىاوي لمي. وماهت الىتائج التحليليت

به المىصلت النمىميت مثل روهيت للأسلاك شلن استعمال الىتائج التحليليت جم مىاقشت مجالاث مختلقت للخىاص الإبحساباث الىمىذج. 

 رون.لن طاقت السبط للشىائب الضحلت، فصل الطيف الفسعي الداخلي، طيف الطاقت المثازة، وسسعت اهتقال الإ

ًروهيت، الشىائب الضحلت، أشباه المىصلاث، البئر النمىمي لسلك، أهظمت أحاديت البعد.لن : الخىاص الإالكلمات المفتاحية
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