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Abstract: In this paper, we propose a most general form of a linear PIDE with a convolution kernel. We convert the
proposed PIDE to an ordinary differential equation (ODE) using a Abaoub- Shkheam - transform (Q). Solving this ODE and
applying inverse Abaoub- Shkheam an exact solution of the problem is obtained. It is observed that the Abaoub- Shkheam -
transform is a simple and reliable technique for solving such equations. A variety of numerical examples are presented to
show the performance and accuracy of the proposed method.
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1- Introduction.

One of the most effective tools for solving problems in physics and engineering is using the
transform method to obtain a solution for a given differential equations or integral equation by means of
inverse transformation. Among these Transforms are the Fourier [1], Laplace [2], Hankel [3], The
importance of an integral transforms is that they provide powerful operational methods for solving initial
value problems and initial- boundary value problem for linear differential and integral equations.
Recently, in 2013, Khalid S. Aboodh introduces “Aboodh Transform” and applies for solving ordinary
differential equations [4-5]. It is also used to solve partial differential equations [6], Heat equations [7].

Real life phenomena are often modelled by ordinary/partial differential equations. Due to the
local nature of ordinary differential operator (ODO), the models containing merely ODOs do not help in
modelling memory and hereditary properties. One of the best remedies to overcome this drawback is the
introduction of integral term in the model. The ordinary/partial differential equation along with the
weighted integral of unknown function gives rise to an integro-differential equation (IDE) or a partial
integrodifferential equation (PIDE) respectively. Analysis of such equations can be found in [14-22, and
application of partial Integro — differential equation play an important role in the various fields of many
problems of mathematical fields,

In this article we propose amost general form of a linear PIDE in two independent variables with a
convolution kernel.in section 2 we provide some preliminaries regarding QT. section 3 is devoted to the

proposed method and section4 provides an number of examples of various types.
2.preliminaries:

2.1-Abaoub- Shkheam Transform "Q — Transform[8]

Definition: et f (t) be a function defined for all t = 0, the Q-transform off (t) is the
function T (u, S) defined by

Let f (t) be a function defined for all t = 0, the Q-transform of f (t) s the
function T (U, S) defined by

o =t
T(u,s) =Qlf] =J, f (wt)es dt (2.1)
s € (ty,t,)Provided the integral exists for some s, where

The original function f (t) in (2.1) is called the inverse transform or inverse of T'(U, S), and is

denoted by.
() =Q {T(u,s)}

Alist of the Q- transforms for elementaryfunctions ispresented in theTable (1)
Table (1) Q-transformfor someelementaryfunctions
S.N F (t QIF(®] =T (u,s
1. 1 s
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S.N F (t) QF®)] =T (us)
2. t us?
3. t2 u2s3
4. t" s>0neEN n!uts™t1
s
5. et S
1-— aus
6. t'r>-1,5s>0 I'(r+1Du's"t1
7 t s
. cosa _—
1 + a?u?s?
2
. aus
8. sin at —
1 + a2u?s?
9 h at S
. cosha _—
1 — a?u?s?
i aus?
10. sinh at _—
1 — a2u?s?

2.2- Convolution transform[11]
Let f (t) and g () having, Abaoub- ShkheamAbaoub- Shkheam sT; (u,s) and T (, S),
then Abaoub- Shkheam transform of the convolution of f and g is given by
[f@®) * g(©O] = uT; (u,s)T; (w,5)
Theorem 1:

Abaoub- Shkheam transform of partial derivatives are in the form:

1- Q[af(xt)] ——F(x s, u)——f(x 0)

2F(eD] _ Qg ()
2 - Q [ ot2 - s g(xi O)

1 1 0
= gT(x,S,u) _af(xi 0) - Sa_]: (X, 0)
3- [— = —T (x,5,u)

4- Q[axz]_ =T (x,s,u)

proof
To obtain Abaoub- Shkheam transform of partial derivatives, we use integration by parts as
follows:
of(x,t) Z
| Q[ N aes dt

_(Pof -t _ typ 1Pt
hmf a—tes dtzgl_rgof(x,t)es |°+§fo es f(x,t,u)dt

p—o 0
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1 1
= —E‘U(X, 0) + EV (2.2)

We assume that,f is piecewise continuous and is of exponential order.

Consider,

32f(x,t)
2- Q[ at?

We have let Z—: =g

[azf;g t)] 0 [ag(x t)] g(x t)] 900 t)

(2.3)

V(xus) 1 _ la_v
- 0(x,0) — 22 (x,0)

u2s?
Us the Leibnitz’ rule (to proof (3) and (4

a © “ta
3- Q[f( ,0)] = [ €5 —f(x,u, t)dt
ifoo e_?t f(x, u, t)dt=
aX O ) )

d J—
&V (x,u,8)=

0[] = v s

We can easily extend this result to the nth partial derivative by using mathematical induction

3. Solving PIDE using Abaoub- Shkheam transformsmethod:
Now to illustrate the method we consider the general linear partial integral differential equation,

S0 a 204 Tl by I cut g dy S e (6 — ) 28D g 4 f(x,0) = 0. (3.0)

Applying a Abaoub- Shkheam transformation to Equation (3.1), we get

S Q|2 + T by @[] + cQlul + Sio di Q[ ki (6 — ) L2%2 ds] + QL (x, 0)] = 0 (3.2)

Using theorem 1 and theorem 2, we get
div
(X u,s) +

dv(xus)+cV(x u,s) + X, d; uk,(u,s)

iz0 i%__zk 0(:: )(sz(c))1 Yizo
(ER0) Rl N ¢ < )
Vix,u,s) = Q[u(x,t)] , f(x,u,s) = Q[f(x,t)]where
l?l(u, S) = Q[ Ki(ul t)] and

Equation (3.1) is an ordinary differential equation in U (X, u, S). Solve this ODE and take inverse

Abaoub- Shkheam transform of U (X, u, S), we getasolution U (X, U, t) of (3.3)
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4-lllustrativeexamples:

In this section we solve first order partial-integro differential Equations and the Second order
partial-integro differential equation, wave equation, heat equation, Laplace equation and Telegraphers
equation.

In this section we illustrate some examples to explain the presented the method, we chose

examples have exact solutions.

Example 4.1:

Consider thewave linear partial integro- differential equation,

Upe = Uy + 2 [ (t — Su (x,t,5) ds — 2e* (4.1)

with initial condition u (x,0) =,u; (x,0) = 0 and boundary condition
u (0,t) = cost
Taking Abaoub- Shkheam transform of Eq. (4.1), we have

Qluee] = Qux] + 2Q[[; (¢ — S)u(x, t, s) ds] — 2e*Q[1])

V(x,s,u) — %v(x, 0) — %vt(x, 0) = %V(x, s,u) + 2uQ[x]Q[V(x,s,u) — 2e*Q[1]

u?s?
. _1 x_y 2.2 ox
= V(x,s,u) =€ V'(x,s,u) + 2u®s*V(x, s, u) — 2e*s)
V'(x,s,u) + (2u?s? — ! W(x,s,u) = (2s —L)e"
) ) uzsz ) ) uzs

(Zu2 s? _uzlsz)x

I.LF=e

s
u2s2+1

1
V(x,s,u) = e* + Ce(m—Zuzsz)x 4.2)

Q[u(0,£) = V(0,1) = Q[eost] = = (43)
Compare (4.3) in (4.2), wegetc=0

V(x,s,u) = ————e”*
( ) u2s2+1

Applying inverse Abaoub- Shkheam transform on both sides
u(x, t) = Q [V (x,s,u) = e*cost

Example 4.2: consider theheat partial integro-differential equation

Uy — Uyy + U+ fotet‘su(x, s)ds = (x> +1)et — 2 (4.4)
u(x,0) =x% |, u(x0)=1
u(0,t) =t , u(0,t) =0
Taking Abaoub- Shkheam transform of Eq. (4.4), we have

— 2

us s
—V(xu,s) = (x*+1)

1 1
—V(x,s,u) ——v(x,0)=V"(x,s,u) +V +
us u us 1—us

1
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1 us 1 S
V" (x,s,u) — (— + + 1) Vix,u,s) = ——x%—(x*>+1) + 2s
us 1—us u 1—us
V" (x,s,1) V(x,u,s) B S
x,s,u) ——V(x,u,s) = x4 — s
us(1 — us) u(l — us) 1—us
1 1
V= Cle\ius(l‘“s)x + Cze_\lus(l‘”s)x + sx? + us?
Now
Q[u (0,t)] =V (0,t) = us?
Qu,(0,)] =V'(0,t )=0
Using (17) and (18)in (16) we get,
Solving (4.5) and (4.6) weget, C; = C, = 0
V = sx? + us?
Taking inverse Abaoub- Shkheam transform we get,
u(x,t) =x%+t
Example 4.3:
Consider the linear partial integro-differential equation
XUy = Uy + xSint + fotsin (t — s)u (x,s)ds (4.7)
With initial conditions,
u(x,0) = 0,us (x,0) = x
And boundary condition, U (1, t) = X
Taking Abaoub- Shkheam transform of Eq. (4.7), we have
V= us?x V( )
x - 14+u?s2 1+u?s? X, s,u
" us?x N u?s? Ve )
x 1+ u?s?2 1+ u?s? xS
’ 1 us?x
XV = [uzs2 1+u2 2] Vix,s,u) = —ox+ 1+u2s? (4.8)

Solution of (4.8) is,
V =us?x + Cx[uzs2 1+u252] (4.9)

Where C is a constant to be determined, from (4.9), we have,
Qu (1,)] =V (1,t) = us?

From (15) C =0,

then, V = us?x (4.10)
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Taking inverse Q-transform on both the sides of (4.10), we get,
u(x,t) = tx

5. Conclusions.
In this paper, we have successfully developed the Q- transform for solving linear partial integro-
differential equation. The given application shows that the exact solution have been obtained using very

less computational work and spending a very little time.
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