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Abstract: In this work we will establish almost sure convergence for k-nearest neighbor estimate of the regression function
under some mixing conditions. Our results will extend some previous results in the i.i.d case to the dependent case. In
addition, we will conduct a simulation study using R software program to display the importance and influence of the

sample size (n) on behavior of the estimator. For this purpose, the mean squares error criterion (MSE) was used.

Keywords:Nonparametric regression, mixing concepts, k-nearest neighbor estimator, cross validation method,

convergence.

bl Doyt s Lyd ASYI K 31 clylgaed! il H0al wuSY) acs oyla|

FLadl el dags
Gl dezma
Loy || odd Aasle || palall 348
ponramee
Loy || 3hws Aaale || pglall 38

ol boyd pamy coslaml A L,)ﬁ AU k3 cllexdl Haal BluaY gloil pany el sda @ pddiw paliiwll
Aajodl alusiuly BELee Alyud 28LaYL Ak, Wl ) (iid) Uanad) Dl o Aaylad! Jles¥l (and puss (2 Lzl
ozl Slasye Jawgie (MSE) Hlins plasiul @3 o 50l lia elu e (n) Wgad) gz a5l Gung Apeal 28pal R dslasy!
o2l il

coladl cJabal) gamdl dasb (5,8 AU k) eyl jiae (5l cdlelae ¢ oI 5ozl e biad | Lol

Introduction.

Regression analysis is very important tools to show the relationship between variables in statistic.
There are two kind of regression (parametric regression, nonparametric regression). In parametric
regression we assume that we know the form of the regression function. However, the form of the true

regression function is not usually known in practice, so parametric regression is not always a good choice
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to estimate the regression function. So, the nonparametric regression methods are better choice to
estimate the unknown regression function where no assumptions about the form of the regression
function.

One of the oldest nonparametric approaches to regression analysis and pattern recognition is the
nearest neighbor estimation, Fix and Hodges (1951,1952) suggested the basic idea of these
nonparametric estimation rules and formalized by Royall (1966). Under the i.i.d. assumption, many results
about properties of k-NN regression have been studied for a long time, and we list some of works here.
The MSE, the MISE and the asymptotic normality of the k-NN regression estimate with uniform weighting
function was studied by Royall (1966). Later Mack (1981) extended this result for non-uniformly
weighted k-NN regression estimate. He studied the bias and the asymptotic normality under the i.i.d
assumption too. Stone (1977) present the convergence for various type of k-NN estimators, strong
consistency are studied by Devroye(1981), he show the almost sure convergence to O for special case
under the boundedness of y. Devroy(1982) obtained the strong consistency and the uniform
convergence. Collomb(1980) obtained other types of convergence like convergence in probability, almost
surly and almost completely of the regression function estimation.

A number of works such as Mack and Silverman(1982), Cheng(1984), Devroy(1978), Li and et
al.(2011), Kudraszow and View(2013) give strong uniform convergence rates. Biau et al.(2010) give
guarntees under L, risk. Devroye et al.(1994) give consistency guarntees under the L risk. We will
expand results to dependent processes for the k-NN regression estimate. Clearly, we will establish the

almost sure convergence of such regression estimator for ,8 — Mmixing processes.

STUDY PROBLEM:
Nonparametric regression was widely studied in the independent case, but in real application, this

is not always achieved. So we want to expand the study to the dependent case.

OBJECTIVES:
We aim in this paper to extend some results in the i.i.d case to the dependent case; clearly, we aim

to study almost sure convergence for k-NN regression estimator under some mixing condition.
MATERIAL AND METHODS.

1. Nearest Neighbor Regression estimate:

Let (X,Y) be a random vector defined on some probability space (Q,A,P) and talking
values in R% X R. The regression function of Y given X =X is defined by m(x) =
E(Y|X = x).
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Generally m(x) is unknown and one wants to estimate it using a set of copies of (X, Y). Let
D, = {(Xl, Y),.., (X, Yn)} be a set of copies of (X, Y). Observe that (X;, Y;) has the same
distribution of (X, Y). Many ways of estimation are suggested in the literature. One of the most simple
and popular is probably the k-nearest neighbor method.

For a fixed X in R% our goal is to estimate the regression function m(x) =
E(Y|X =x) using the data D,,. Equip the space R? with the standard Euclidean norm, and then the
k-nearest neighbors estimate (k-NN) ofm(x) is given by

n
mn(x) = z W Y;
i=1

with Wy, = Wy (x; X4, .., X)) = 1/k if X is one of the k nearest neighbors of X
among X1, .., X5, and Wy, is O otherwise. Hence, Z?zl Wy = 1.
We suppose that kK = k(1) with
k> oas n— o (1.1)

and

k/n—->0asn - o (1.2)

Observe that assumptions (1.1) and (1.2) are classical to establish different kinds of consistency
for the regression and density function by the k-nearest neighbor in the i.i.d case (see for example Bosq

and Lecoutre(1987)).

2. Mixing conditions.

We first introduce some notations. A sequence (Zi,i > 1) is said to be @ — mixing (or

strongly mixing) if
a(n) =sup sup |P(BNA)—P(APB)|»0asn— o
121 AeFlBeFR,,

Where Tll,f]:lfn the sup 0 —algebra generated by (Zi,i =1,.., l) and (Zi,i =1+
n,..) respectively. The @ — MixXing coefficient is one of the most general mixing coefficient (for
further details about mixing see Bradely(2005),Rio(2017) and Bosq(2012)).

It is often used to obtain asymptotic results for some estimators in nonparametric functional

estimation. We suppose that
an)=0n""*) forp>0. (2.1)
This means that () tends to 0 at polynomial rate. The sequence (Z;,i = 1) is said to be
B — mixing if

B(n) = sup E(sup|P(4) — P(A|F3)) > 0asn —» o

121 geFl
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One can verify that 2a(n) < B(n) which means that any [ —mixing sequence is

Q@ — Mixing. We suppose that
pn) =0n"*) forp>0. (2.2)

3. Preliminary Definitions and lemmas:

Definition 1: Absolutely continuous measure: A measure [l is absolutely continuous with
respect to another measure Aif /1(14) = 0 implies that ,LL(A) = 0.if a measure said to be absolutely
continuous, this means absolutely continuous with respect to Lebsegues measure.

Definition 2: Consistency: One of important properties of good estimator, where we say that an
estimator é; is consistent estimator of 8 if

lim P(|§,\l— 6| < e) =1
n—-oo

i.e. the é; is consistency if, that converge to the true value of parameter being estimated as
sample size increases.

The following lemmas will be used to establish the consistency results in this paper.

Lemma3.1:Let Z; and Z, two R —valued bounded variables. Then
lcov(Zy, Z))| < 4l Z1 |11 Z2 Ml o (0 (Z1), 0(Z4))
Where ||. || o denotes the supermom norm and 0(Z;) denotesthe 0 — algebra generated

by Z; for i = 1,2 .Forthe proof of lemma 3.1 we can refer to Rio(2000).

We refer the reader to Berbee(1979)for the proof of lemma (3.2):

Lemma 3.2: [Berbee’s lemma]. Let Z, W be tow random variables defined up on a probability
space ({1, F, IP) taking their values in R% andlet A = 0(Z),B = o(W). Then there exists Z*
random variable independent as Z and has the same distribution of W/ and satisfies P(Z+2Z7Z")=

B (A, B).

Denote Sy ;- the closed ball centered at X € R with radius T > 0.
Lemma 3.3: Let U be an absolutely continuous probability measure on R%.let
Bo (%) = {#: u(Syjjx—s1) < al:
Then, forall X € Rd,
u(Ba (1)) < vaa.

with Y4 denotes the minimal numbers of cones centered at the origin of angle 1/ 6 that cover
R4, depends on the dimension d only.

We refer the reader to Devroye and Gyérfe (1985) for the proof of Lemma 4.3.

Lemma 3.4: [McDiarmid]. Let Xl' . Xn independent random variables taking values in a set

A, and assume thatf: A™ = R satisfies

sup , .
xpon |f (X1, x0) — F( X0, %21, Xy Xig1s - X)) < ¢ 1<i<n.
961,..,92'71_614
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forsome C1,..,C, > 0
Thenvt >0,

—2t2
P{lf(Xli"an) - Ef(Xll"!Xn)l > t} < exp(n—tz)

AR or
i=1"i
We refer the reader to McDiarmid (1989) for the proof of this Lemma.

4. Main results.

Denote [ = [ralMa(x) — m(x)| u(dx)

In this section we state the main result on the K-NN regression estimate for dependent sequence.
The result established in the following theorem providing the almost sure convergence of the k-NN
regression estimate for every distribution of (X, Y) with bounded Y such that |[Y| < M < o for
some M > 0 when X hasadensity f.i.e wewanttoprovethat /[, = 0 asn — oo.

The above consistency result is previously investigated by Devroy et al. (1994) in the i.i.d case.
The extension problem of this result to the dependent case has not been yet treated.

Theorem: Suppose that D,, are observations of strictly stationary 5 — Mixing sequence

such that 2.2) withp > 1. Suppose in addition that (1.1) and (1.2 )are satisfied, and
k

— —> asn — © (4.1)

Vn

and that there exists an integer § = q(n) with 1 < q < n/2 suchthatn =

LA (42)

qlog(n) '
and

Z k~nB(q) < oo (4.3)
Then,

(J, — 0 asn — o0) with probability one.

Whereas the condition (4.1) is weaker than that of (Bosq and Lecoutre (1987), Theorem (11.3)) in

i.i.d case.
Observe that if (1) = O(N™P) then a(n) = 0(n™P) since 2a(n) < B(n) with
polynomial rate.

The strict stationary is a concept which is stronger than the identical distribution. This condition is

needed to establish the strong consistency.

5. Proof:

In order to prove the theorem, we re-write M, (%) as follows:
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k
1
my(x) = Ez Yo
i=1

Xy Yw)s - Ky Yoy)

is reordering of the data according to increasing values of ||x — X(i)”(ties are broken by

Where

comparing indices). Where ||. || the Euclidian norm on R% For fixed € Rd, [|lx]| = (XJ’C)l/Z .

Denote i, (x) = %Z Y;1 (Xi€Ster) where 1, = r,,(x) satisfies that

w(Seern) = % (5.1)
The existence of T, (X) is ensured since X has a density f.
Proof of theorem: For the integer  defined in theorem we can write M = 2pq + S with
p and s are two integers such that < P < g and 0 < s < q . Without loss of generality, we
suppose that S = 0.
Llet Z; = (Xi, Yi); i = 1,..,nanddefine the following vectors:

Al = (Zl,..,Zq) B1 = (Zq+1,..,Z2q)
Az = (Z2q+1;--;Z3q) B, = (Z3q+1r--'Z4q)
Ap = (ZZ(p—l)q""Z(Zp—l)q) By = (Z(2p-1)q+1, -+ Z2pq)

Let's definefor [ = 1, .., P afamily of subsets in {1, ..,n} as follows:
S={i:2(l-1g+1<i<@2l-1)q}
S;={i:2l—-1)g+1<i<2lq}
Observe that, forexample,if L = 1,5; = {1,..,q}and S~1 ={q+1,..,2q}
S0,A, =(Z;,i€S) and B, = (Z;i€S))
Furthermore, we have |i —]l > q forany [ € S;(i € 51) and j € Si(j € 51) with

Oy

| #
Denote:
Ay =(2",..,27,) = 4} , Bo=(Z"441,-,Z%34) = B§

Using Berbee’s lemma we generate A;, A;, e A;, sequence of independent vectors:

1 =(27,..,27) Ay = (Z" yqirr 273 Ay = (27, L0 Z'3q)

Whereas A, A7 have the same probability distribution, and A] is independent of Ag with
P(A; # 4]) < ,Bq (by Berbee’s lemma), also the tow vectors A, A5 have the same probability
distribution, and A3 is independent of A7, A1, Ag, with P(45 # Ay) < ﬂq. Thus, by the same
argument on the reminder elements, we finally get that A;;, Ap have the same probability distribution

and that A;, is independent ofAO, .. ,Ap,A*, .. ,A;,_l, with ]P)(A;, * Ap) < ﬂq. In the same
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way we generate a sequence of independent vectors BI, . B{; from the sequence By, .., Bp by using
berbee’s lemma whereas [P)(Bl* * B)) < ,Bq vi=1,..,p.
Observe that the vectors AI, . A;; are independent; and BI, . B{; are also independent. It is
easy to see that
IP(Z;‘;tZi)sﬁq Vi=1,..,n
Or
P(X;, ) # XuY))<p, Vi=1.,n

But, clearly, we have:

f [ () — M) u(dx)

< j M () — Bty (0] (dx) + j B () —m@Idx)  (5.2)

R
The second term on the right-hand side fRdlm(x) - ET/T\ln (x) |,u(dx) deterministic “bias”
type term, whose integral will be shown to converge to zero. According to (5.1), the condition (11)

implies that 73, (x) = 0. Note that using (5.1)

Emn(x) —E (YI(Xes(xr )))

=25 (E (Yl(xes(x,r,g) X))
= %E (1 (xeSery) ECV1X) )

- f E(Y|X = £)u(d#)

k

S (x, Tn)

) ] E(YIX = Hu(d®)

(x Tn)

.u (S (x,rn)

So, by lebesgue’s density theorem [see Wheeden and Zygmund(1977)], yields

1
Em,(x) = —— E(Y|X =x)u(dx) - E(Y|X = x) = m(x).
W00 =t [ E(YIX = D) » EVIX = ) = m(x)
Since Y is bounded, dominated convergence theorem implies that:
| Im) = B Glutex) 0 (53)
R

Let's move to the first term in the right- hand side of (5.2). We have:

j I () = By COlu(d) <

Joal My () — Efity, () |udx) + [ qlmy, () — 7y, () |u(dix) (5.4)

Let us deal with each term in the right-hand side of (5.4). For the first term, we have
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&
P <f |7, (x) — Eiy, () | u(dx) > 5) <
Rd
P (|l i () = E () 1(d2) = [l () = B () ()| > £)
+P ( fpal 0 () — B (0)lu(dx) >5): =1 +11. (5.5)
— _1 *
Where m n(X) = EZ Y; I{X*iES(x,rn)} .
For the term (1), for n large enough and by using Markov's inequality, we have:
— — &
= (| [ 100~ Bty Olua) - [ 170000 - By Ol > )
R R
_ E| [palPin (x) — Efy, () |u(dx) — [oalm*, (x) — Em*, (x) | u(dx)|

r= /4
< 48_11‘7[ |1, (x) — Efy, ()] — |m*, (x) — Em*, (x)||u(dx)
R

According to the Fubini’s theorem, we get

| < 471 f Ei, (x) — 75, () + Eft*, (x) — i, ()| (dc)
Rd

I< 48-1J (E|lm,(x) — m*,(x)| + E|m,(x) — m*, (x) Du(dx)
Rd

[ <87 | (Elm,(x) —m*, (x)Du(dx)

R4
n n
1 1 .
Ez YiI{XiES(x,rn)} N Ez YL I{X{‘ES(x'rn)}
i=1 i=1

I < 88_1f (E
R4

8e71 <

<[ Y

k R4 F—

Note that if (Xi*' Yl*) = (X;,Y;), then [ = 0. Generally,

8e~?! -
P== ¢ (Z Ld( )“(dx)-’{(x;ﬂy:mxi.n)})
i=1
16Me™1

| < TZ P(X;,Y) # (X, )

By the definition of {(Xik, Y5,.., (X;, Y., )} and by assumption, we have

) p(dx)

Viltxiesrp}t — Vi Tixiescrm) u(dx)

YiI{XiES(x,rn)} a YL I{Xi*es(x,rn)}

n

16Me~t 16Me™n

SR I
i=1

By the assumption on k and the Borel- Cantelli lemma, we get

I-0 as n- o with probability 1. (5.6)

Now, we move to deal with second term I, we have

I = P( |ﬁ?kn(x) - Eﬁ?kn(x)l.u(dx)

R4
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n n
1 1
1= ([ e = E0 Wliesn
i=1 i=1

Since n = 2pq, we can write

n
Z Yi*I{XEES(x,rn)} Z Z Y I{X ES(xrn)} + Z Z Y I{X ES(xrn)}
i=

u(dx) > Z)

=1 i€S; =1 lES[
&
i S d f Z Z Y I{X Es(xrn)} kz z Y I{X ES( :u(dx) > g
=1 lESl =1 lESl
&
P ,[d kZZY lxi €Strm} kzzy e T€Stern H(dx) > 3
R =1 lESl =1 lESl

To find an upper bound for Il, it suffices to treat one of the two terms in the right-hand side. Let’s

defined the function F:

F:(RYxR)" >R

F(A*' ) j I{X Es(xrn) kzz Y IX { ES(xr )} (dx)

=1 (€S}

Therefore:

P(F(as...45) > %) < P(|F(45,..,4) — EF(A3,.., Ap) + EF (A3, A3)| > =

Let us prove that

EF(A3,..,A;) -0 (5.7)
to do that, denote:
$(x) = kzz Ylixiesery)
=1 (€S

Applying Cauchy-Shwartz inequality; we get, by the strict stationarity,

EJdI¢>(x) — E¢(x)|u(dx) < fdJE(¢(x) — E¢ ()" u(dx)

= [pa [var(op(x))u(dx)

P
1
= fRd var EZZY‘ Iixre sgrn) pu(dx) (5.8)
=1 i€S;
1% 1%
B f a |2 Zvar Z Vilixiesar) | * kzz cov Z ¥lixescorm) z Hxjesnp) |#04%)
R =1 iES] =1 iES] JES]
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1 1
= Ld 12 o pq-var (YI{Xes( xr )}) 7, P-CoV Z Y IX T€Sterm)? Z I{X ES(xrn)} ,Ll(dX)

IES] JES;

k
var (YI{XES(x,rn)}) < MZM(S(x'rn)) < 1\/12 E (59)
ViFES |C01.7 (Yi*l{xfes(x,‘fn)}' Yj*I{X;ES(x,rn)})|

— 4 ||Yl I{Xi Es(x,rn)} 0 Y] I{Xjes(x,rn)} o

cov Z Y I{X ES(xrn)} Z X ES(xrn) N z cov (Yi*I{X;ES(x’rn)}’ Yj*I{X;ES("'T”)})

a(li—j

IES] JES] l"Je?l
i#]
=4 z ”Y Iix; €S(xrn)) | {X €Storm) | a(li—j
i,jES] n
i#j
2
< 4M? ||1{xe5<x,rn)} | Z a(li — jI)
@ i,JES]
i#j
< 4M?q z a (t)

By the assumption & (t) = t~P; p > 1 then, thereis ¢ > 0 such that

cov (Ziesl Vi lixies ) Ziesy Yj*I{X;ES(x,rn)}) < 4AM?2 Y2, t7P < 4M?qc

k
= £ | 1600~ Epolu(d < | j%qu +BLamzcu(dn)
R4

P ook L Paamze = ML oy
< kqu n+k24qM C_\[2k+k22M C-0 (5.10)
The last limitis a consequence of (1.2) and (4.1). By (5.8) and (5.10), we get (5.7).

Thus, forn Iarge enough,

f ZZ Yy €Sarm} kzz Yy €Stxr ,u(dx) > %

=1 (€S =1 (€S
< P(|F(4;,..,45) — EF (A3,... 43)] > 1—6)

Since {Ai, . A;;} is a sequence of independent vectors, let

d;k = {(321' 3,11)1 R (Xq' yq)}
a; = {(x,y1),--, (xq'yq)}

Almost Sure Convergence of The k-NN (111) Al-shakh, Deribati, Younso
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Then,

|F(a{,..,a;) —F(a{,..,dz‘,az‘,..,az’;) <

q

1 1
rd Z( Yil{rjescorm) ™ yf {%j€SGern )}) u(dx)
j=1
a (L, e ) ~ zaM |

But Zj:l (k yfl{xjes(x,rn)} kyfl{?fjes(x,rn)} is bounded by . and can differ

from zero only if X; € S(x,rn) or )&j € S(x,rn) By note that X; € S(x,rn) if and only if

k
#(S(x,”x—xjn)) < Z’ and by using lemma 3.4, therefore

q
1 1
Sup fRd Z (Eyjl{xjes(x,rn)} - Eyjl{fjes(x_rn)}) Au'(dx) <

j=1
By applying Mcdiarmid inequality where i=1,.., p, ¢ = ZqM]/dTl_l ,sthen

14
) < Zexp< (%) /z(Znydn—1)2>
() ‘
= 2exp <2quy1 PR

< —&%n
= cexp 256qM?y 2

In the same way we find that the second term in inequality

f z Z ¥lixiestrn) = kzz V' Iixrese,, )| #(dx) > g

=1 lESl =1 lESl

<9 —E n
= cexp 256qM?y,2
As a consequence,

I < 4exp(

2qMk B
Ya = 2qMygn~?

P(|F(A;..,A) — EF(43,.., 4

<) (5.11)

256qM?y 42

Now, let us move to deal with the second term in the right-hand side of (5.4).

We have, |my, (x) — M, (x)| =

1
; Z;Ll YjI{XjES(x,rn)} o Z YI{XJES(x Pn)}

= Ez Ik es iy ~ X s i pm)
=1

n
1
=M Ez I{Xjes(x,rn)} -1
j=1

= Mlgn(x) - Egn(x)l
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Where gn (x) is defined as T/I’\ln (X) with Y replaced by the constant random variable Y =1.

Hence, by the same steps using to prove (5.9), we get,

Ve>0, P (flg‘n(x) —EgG,(x)|uldx) > e) < 4exp (— %) (5.12)

For some constant ¢ > 0 depend only on d.

ne?
[%]n E:E}IS 6eXp(—'EEQ;5RZE;E)
By talking the sum over n to both sides we get
ne?
zP{]n = S} < 62 exp(—W)

nx1 n=1

— 00 S N — O, by using Borel-cantelli’s lemma together with

Since by assumption

(5.11) and (5.12) we get
11 -0 andflgn(x) —Eg,(x)|uldx) - 0 with propability one. (5.13)

According to (5.5),(5.6) and (5.13) we get

flmn(x) — Em, (x)|(dx) — 0 with probability one. (5.14)
R4
Finally, proof is completed according to (5.3) and (5.14)

6. Simulation study.
In this section we conduct a simulation study to compare the performance of the estimator for

different sample sizes. To apply the k nearest neighbor method one should select an optimal k (number of

neighbors) based on some criteria, for example k = l\/ TlJ neighbors is widely used in practice, but this
rule is not always feasible and may give poor results, so we propose the cross-validation criterion(CV) as
smart way to select the optimal number of k.

The CV criterion is based on minimizing, with respect to k, and given by the following term
n

1 . 2
Vi) == (- mi' () wex
] i=1

Where mM,;*(x) indicates the k-NN regression estimation based on leaving out the i pair
(Xi, Y;), and w(X;) is the weight function of the element X, we will take it as constant.

Now we use R software program to generate data (the reader can referred to
Cohen(2008),Crawley (2013) and Rhys(2020) to know more information about R language ). Data are
simulated for Beta mixing sequence, where different sample sizes are chosen n=[50,100,200,300]. To

increase robustness of the results, we generate 100 training samples of size n and 100 corresponding test

samples of size 100, and average the results. We use the training sample to find the optimal k by CV/(k)
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criterion, and we use the Mean Squared Error (MSE) to evaluate the results based on the associated test
sample.

The method is applied to the following regression model:

X, —1
Yl-=2+0.5Xi+10exp( > )+el~

Where {Si}?=1 are i.i.d random errors with mean 0 and variance 0.25.

N 50 100 200 300
Kopt K=2 K=3 K=2 K=2
AMSE 0.85817 0.662132 0.3324791 0.32971

Table 1: Estimated optimal k and average mean squared error corresponding to sample sizes.

Taple 1 shows that the estimated optimal k and the average MSE decrease when the training
sample size increases. This means that the practical results in the simulation study are in line with
theoretical results.

Now we try to applying k-NN regression estimator to the autoregressive models of order p .
Autoregressive models AR(p) are a special case of ARMA models that are known to be ﬂ—mixing (see
Mokkadaem(1988)).

Let {Z; }1— 1 be a stationary time series, and X; = (Zt—lr cey Zt—p) . AR(p) models defined
as:

Zy =Q1Zi gt APzt & , t=1,..,n

Where &:~N (0, 0'2) and ¢ = (¢1, vy (Pp) is the vector of model coefficients, then
regression model is: Zy = m(X;) + &

For this we use R software program to generate time series of size 7. = 200 as observation of
AR(1) model z; =092 +&.

First we find the optimal k value using cross validation method( k=2), then we apply k-NN

estimator.
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(@] 50 100 150 200
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Figure (1): k-NN regression estimator to the time series with k=2.
Figure (1) shows how much the k-NN estimator is appropriate to scatter plot for time series under

study.

7. Conclusion.

We see in this paper that the k-NN regression estimator converge almost surly to the regression
function under B mixing condition. The simulation study showed that the quality of the estimator
increased with the increase in the sample size.

We suggest expanding the study to include the case of random fields and spatial stochastic

processes. We suggest too developing the results to include other types of mixing.
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