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Abstract: We've introduced in this paper the notion of fuzzy ideals of Pre A —algebras and investigated of some of
their properties. We've proved characterization of fuzzy ideals by their level of fuzzy sets. Also, we've proved some

characterizations of fuzzy ideals generated by a fuzzy set in terms of their level fuzzy sets too. Furthermore, we've

introduced some theorems related to homomorphism of Pre A*—algebras and images of fuzzy ideals according to

them, also some theorems of Cartesian product of fuzzy ideals, and marginal fuzzy set from the Cartesian product of

Pre A" —algebras.
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Introduction.

The scientist Birkhoff is considered the first to study the lattice theory in 1989"". E.G.Manes
introduced the concept of Ada (Algebra of disjoint alternatives) in a paper titled .

“The Equational Theory of Disjoint Alternatives”

The concept was basically based on the extension concept “If- then-else” more than in Boolean

algebra.
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In 1993, E.G. Manes reintroduced the concept of Ada Gl depending on C-algebra which was
defined by F. Guzman and C. Squir in 1990 (2

In 1994, P. Koteswara Rao introduced the concept of A * —algebra (A, A, Vv, *,:,7,0,1,2) Bl He

didn’t only study the equivalence with Ada, C-algebra, Ada’s connection with 3-rings, but also introduced
the concept of If- then-else over A” —algebra and ideal init.

In 2000, J. Venkateswara Rao introduced the concept of Pre A*—algebra (A,Vv,A,:)which

.. . 1]
represents the algebra form of three valued conditional logic " .

In 2009, Venkateswara Rao et al. generated Pre A*—algebras from Boolean algebras and
defined the congruence relation and Ternary operation on it [7].

In the same year, K. Venkateswara Rao and K. Srinvasa Rao defined a partial ordering on
Pre A® —algebras and studied its properties as a Poset 2
Boolean algebra represents the algebraic form of two valued conditional logic (true-false), but the

concept of Ada ,C, A*, Pre A*—algebras are represent algebraic forms of three valued conditional

logic (true-false-unknown).

Study problem:
The study problem can be formulated by the following questions:
1- Can the concept of fuzzy groups be used and developed to build a fuzzy ideal in Pre A* - algebra?
2- Is it possible to find characterization of this fuzzy ideal generated by a fuzzy set from the
algebraic point of view?
3- Whatis the relationship between these fuzzy ideals and homomorphisms?

4- How to build a Cartesian product of these fuzzy ideals?

Study supposals:

Our study in this paper will be about the fuzzy ideals in the Pre A*- algebra, introduction of the
concept of homomorphisms in the Pre A* - algebra on the fuzzy ideals by finding images of the fuzzy
ideals according to these homomorphisms, and introducing the concept of projection and marginality of a

fuzzy set from the Cartesian product of the Pre A* - algebra.

Important of the study:
Itis a presentation of the definitions of modern partial algebraic structures in the Pre A* - algebra
which help in developing this algebra to expand its practical applications, it also expands the horizon and

knowledge of those interested in non- classical logic algebras and its applications.
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Study methodology.

Collecting information, results, and scientific facts that have been reached in the field of the Pre
A* - algebra, analysis of these suppositions and connecting them, deriving new results, and compare it

with its similar (if it exists) in other non- classical logic algebras.

1- Preliminaries:

1-1 Definition of Pre A*-algebra [11]:
Let Aa nonempty set supplied with two binary operations "v" and"A", one unary operation

" " ltis called about the structure (A, v/, A, 1) thatitisa Pre A’ —algebra if it satisfies the following

statements, forall X,y ,Z €A
(Pre A"1) x " =x
(Pre A" 2) x AX =X
(Pre A" 3) X Ay =Y AX
(Pre A" 4) (X AY) =X vy
(Pre A" 5) X A(y AZ)=(X AY)AZ
(Pre A" 6) X A(Yy vZ)=(X AY) V(X AZ)
(Pre A" 7) X Ay =X A(X" VYY)

1-2 Example tel,
Let's take the set A={0,1,2} and supply it with the operations (\, A, : ) defined in the following

tables:

N FPoolo

A
0
1
2

N PR
NN N

v
0
1

2

N © olo
N P ol
N N NN
N o X
N O X

Then the structure (A, Vv, A, @ ) isa Pre A*—algebra.

We note that the elements 0,1,2 satisfies the following:

a) 2 =2
b) 1AXx =x VX €A
c) Ovx =x VX €A

d) 2Ax =2vx =2 VX €A
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1-3 Example [e1,

Let's take the set A={0,1} and supply it with the operations (\, A, : ) defined in the following

v] 0 1 A0 1 X | X°
0|0 1 0|0 O 0|1
111 1 110 1 110

Then the structure (A,Vv,A,:) is a Pre A*—algebra, and you can easily satisfy that

(A,Vv,A,:) isBoolean algebra.

tables:

1-4 Note [8]:

1. The identities (Pre A’ 1) and (Pre A’ 4)imp|y Pre A*—algebra with all the dual
statements of (Pre A* 2) to (Pre A* 7)
2. EveryBoolean algebrais a Pre A*—algebra.

3. APre A’ —algebra is a Boolean algebra if it satisfied the two absorption laws.

1-5 Definition of ideal [9]:

Let A a Pre A*—algebra, and let | a nonempty subset of it.

Itis called about | an Ideal if the following conditions were achieved:

(1) abel = avbel

(1,) ael = xnrael VX €A

1-6 Definition of ideal

Let A a Pre A*—algebra, and let P an element of it. The set {X AP | X €A}is called a
principal ideal of Agenerated by P and is denoted by <p >.

1-7 Definition of homomorphism of Pre A* -algebra [G]:

Let (A, VA2 )and (A, v, A1) two Pre A™—algebras. A mapping f 1A —A, s called a
Pre A" -homomorphism if the following hold, foralla,b € A, :

D f@vb)=f(@)vf ()

2) f (aAb)=f (@) Af (b)

3 f@)=(f@)

1-8 Definition of a partial ordering on Pre A® -algebra [6]:

let A a Pre A*—algebra. The relation "<"defined on A

as following:
X <Yy & X AY =Y AX =X isapartial orderingon A, forallX,y €A.
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s 10
1-9 Definition of fuzzy set on aset[ ]:

Let X aset. Afuzzyset f of X isamappingof X into[o,l],that isf : X — [0,1].

s . 10
1-10  Definition of contain in fuzzy sets : ]:

Let X aset, and let T ,Q be two fuzzy sets of X . Then f cgiff (x)<g(x), for all
XeX.

PN R R . . . [10]
1-11  Definition of reverse image and direct image to a fuzzy set according to function "~ :

Let X ,Y betwosets,andlet f : X — Y be afunction.
® Foranyfuzzyset § inY ,we define f 71(9) as following:

vx eX 5 (F H(g)Nx)=g(f (x))
® Forany fuzzy set hinX , we define f (h)as following:

| _[maxh(x) f(x)=y
vy eY ; (f (h))(y)_{o :if there is nosuch x

‘e s . . . 10
1-12  Definition of union and intersection of two fuzzy sets nel,

Let X aset,and let f yJ be two fuzzy sets of X .ThenforallXx € X :
(f ug)(x)=max{f (x),g(x)}
(f ng)(x)=min{f (x),g(x)}

1-13  Definition of Cartesian product of two fuzzy sets [10]:

Let X,Y betwosets, let T bea fuzzy set of X , and g be a fuzzy set ofY . Then for every
(x,y)eX xY .

f xg:X xY —[0,]]
(f xg)(x,y)=min{f (x),9(y)}

114  Theorem "
let A a Pre A*—algebra, and let X,Ptwo elements ofA. Then:
X E<P>SX =X AP

1-15 Theorem [9]:
let A a Pre A*—algebra, and let X be a nonempty set on it. Then the set

n
{_\7/1(8.i AX;)|a € A,X; €X }isthe smallestideal containing X , and is denoted by < X >.
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1-16  Theorem el
Let A a Pre A*—algebra. Then a Poset (A,S) with 1, foranyX,y €A,
INf{x,y}=x Ay.

2- Research Results.

2-1 Definition:
let A a Pre A*—algebra, and let T be a fuzzy set of A. For anyt 6[0,1], the set
ft = {X €A|f (X ) >t } is called a level fuzzy set T att .

e Sincef (X )G [0,1] ,itis clear from the previous definition that
f (x)=max{te[0,1]x ef |

2-2 Definition:

Let A a Pre A" —algebra, and let T be a fuzzy set of A. We called T a fuzzy ideal of A, if the
following hold, forany x,y e A1) f (X vy)>f (X) AT (y)
2) f (x Ay)2f (y)or f(x Ay)=>f (x)
o itisclearthatf (X VY )=f (Y v X),because Aisa Pre A" —algebra.

2-3 Lemma:

Let A a Pre A*—algebra, andlet f be a fuzzy ideal of A. For anya,b € A, the following hold:
1) if x e<a>=f (x)>f (a)

2) If X e<S>=f (x)z_/_\lf (&) ;a,a,,...,a, €S
Proof:
1- Since X €<@> thenitis according to (1-14) is X =X Ad,thenf (X)=Ff (x na)2>f ().

n
2- Since X €<S > thenX =_v1(a1 /\Si) ya EA,Si €S, andsince T isa fuzzy ideal of A,
i=

then:

fx)=F (v(@ As))2 AT @ As)2 AT @)

2-4 Corollary:

Let Aa Pre A*—algebra. Then every fuzzy ideal f of A isaninversor order mapping.

Proof:

LetX,Y EA,whereX Sy ,thenX AY =X ,consequentlyf (X /\y):f (X)
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Since fis a fuzzy  ideal  of A, according to the second condition, we find

f(xAy)2f (y)=1f (x)=>T (y).

2-5 Definition:

Let A a Pre A*—algebra, and let T be a fuzzy set of A. The smallest fuzzy ideal of A

containing f will be called afuzzyideal Of A generated byf ,and is denoted by |

2-6 Theorem:

Let A a Pre A™ —algebra, and let T be afuzzy set of A. Then T is a fuzzy ideal of A , if and only if
each level of a fuzzy set T is anideal of A.

Proof:

(<) Letssuppose T isafuzzyideal of A, and letX , Y Eft.
o SinceX,y €f,  thenf (X)2t & f (y) 2>t ,then

fxvy)zf xX)Af(y)2tAat=t=x vy ef,
o Sincex ef, ,aeA  thenf (X)2t, then
f (@aAax)>f (x)>t =>aAx ef,
So f, isanideal of A, forallt € [0,1].

(=) Let'ssuppose each level of a fuzzy set f isanideal of A, then:

® ForanyX,Y €A ,and according to definition of the level fuzzy set (1-2), we find:
f (x)Af (y)=max{te[0,1] x ef | Amax{ue[01]]y f,}

=max{ minft u}<[0,1]| x f ,y f, }

Suppose min{t ,u}=t since y €f, theny f, because
yef,=f(y)zu &u2t=f (y)zt=y ef,
Then X vy €f, (because f, isanideal of A), so
f (x)Af(y)<max{te[0,1] x vy ef }=f (x vy)

The first condition of the fuzzy ideal definition is hold.
o LetX,Y €A andsupposet € [0,1], wherey €, since f, isanidealof A,thenX AY €f,,s0

f(y)=max{te[01]|y f }<max{te[01]| x Ay &f }=f (x AY)

=f (X AY)

The second condition of the fuzzy ideal definition is hold.

2-7 Property:
Let A a Pre A*—algebra, andleta,b,c,d € A, then:
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a<b &c<d =zavc<bvd

Proof:

a<b &c<d =asnb=a&cAad=c
We have:

avc=(@nb)v(cAad)=(Ccad)v(@nab)
=(cad)va)a(cad)vb)=(@v(c Ad)Abv(cAad))
=(@avicad)avec)abvd)=(@vc)abvec)a(vd)
=((@anb)vc)a(vd)=(@vc)a(bvd)=avc<bvd

2-8 Definition:
Let A a Pre A*—algebra, and let f be a fuzzy set of A.For anyX eA:
f (x)=max{te[01]| x <arb;acAb &f }

2-9 Theorem:

Let A a Pre A*—algebra, and let f be a fuzzy ideal of A.Thenf = if :

Proof:

LetX,Y e A, we have:
o f (x)Af (y)=max{te[01]] x <anbjacAbef }a

maX{U€[0,1]| y <a’Abia’eA b ef, }

If we suppose min{t ,u}=t, then we have:
4 ! !
b'ef, =f (b)2u>t =b'ef,
There for:

f(x)Af (y)=max{te[0,1]| x vy <(@nab)v(a Ab’)
:a,a cA,b,b’ f }
<max{te[0,]]| x vy <(ava)a(avb’)a
bva)abvb)ava eA,bvb ef }
=max{t[0,]| x vy <(ava’)a(bvb’)
,ava eA,bvb'ef}

=f(x vy)
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o f(y)=max{te[01]| y <anbacAb ef, }
:max{te[0,1]| XAy <y <anb;aeA,b ef, }
=f(x AY)

Hence fA is a fuzzy ideal of A . Let prove now thatf < fA :

vx ef, i f (x)=max{te[0,1]| x f,}

:max{te[0,1]| X <X AXX €A, X eft}
=t (x)

Sof (x)<f (x).

Let N be a fuzzy ideal of A, wheref - h ,thenft - ht,because:
vx ef, =f (x)=>t &h(x)=>f (x)
=h(Xx)=2t=x eh,

Since ht is an ideal of A, for all t E[O,l] (according to theorem 2-6) and containingft , we

have:

o f (x)=max{te[0,1]] x <anb;acAb ef, }
=max{te[0,1]| x <anb;acA,bef ch |
<max{te[0,1]| x <anb;anbeh, }
=max{te[0,1]|x eh, |

Hencef < h .so f isasmallest fuzzy ideal of A containingf )

2-10 Theorem:

Let A,B betwo Pre A*—algebras, let K:A—>B bePre A" epimorphism, and let f bea
fuzzy ideal of A and g be afuzzy ideal of B . Then:
1) K (f ) be a fuzzy ideal of B .

2) K _1(g ) be a fuzzy ideal of A.

Proof:

1- Letbl,b2 eB, and suppose thatd, eA, whereK (a, ) =b1 ;i el andaj €A, where
K (aj )=b, ;] €J .Then, according to the definition of (11-1), we find:
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o (K(f)b)AK(E))b,)=max{f () eA;K (@) =b;ielja
max{f (aj)‘aj eAK(@;)=b, ] eJ}
:max{f (a)Af ()8, €AiK (8)=b,K @@;) =b,i el ] eJ}
gmax{f (8 va)la va, €AiK (8 va,) =K (@) vK(@)=bvbyiel,j eJ}

:(K (f ))(b1Vb2)
o (K(f ))(bz):max{f (a)la; €A:K (a,)=b,; ] eJ}

Smax{f (8 Aa;)[a.a, €AiK (a)=b,K(a)=b,i el ] eJ}

:max{f (8 ~a)fa ray €AiK (8 Aa))=K (&) AK (@) =b Abyi el eJ}

=(K(f )b, Ab,)
Thus K (f ) be a fuzzy ideal of B .
2) Leta ,a, €A, foranyb,,b, B, we find:
o (K™(g)@)A(KT(9)(@,)=9(K@)Ag(K(,))
<g(K(@) VK@)
=g(K(a,va,))
=(K(9))(@ va,)
o (K™(9)(&)=9(K@))<g(K(@)rK(@,))
=9 (K (& A8,) = (K *(9))(@ Aa,)
Thus K 7(Q) be a fuzzy ideal of A .

2-11 Note:

Let A,B be two Sets, let K : A —>B be a mapping. For any two fuzzy sets f ,g of A and

two fuzzy sets h,i of B .Then:
Df cg=K(f)cK(9)
) hci=Kh)cK™i)

Proof:
1) vbeB ; (K(f))b)=max{f (a) K(a)=b,va cAicl}
sincef <@, sof (ai)Sg(a.i),then:
(K Nb)<max{g(a )| K(a)=b,va eA,i el}=(K(g))b)
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But if K (@& ) =D, then (K (f ))(0) =0, and in this case it will be also (K (g))(b) =0.
Thus K (f ) =K (9)

2) VaeA; (K7(h))(@)=h(K (@)
Sinceh ci, thenh(b)<i(b) ;b €B, so:
(K7 (h)@) <i(K@)=K ()@ =K (h)cK (i)

2-12 Theorem:

Let A,B be two Pre A*—algebras, let K:A—B bePre A” epimorphism, and let
f y J be two fuzzy ideals of A and h, 1 betwo fuzzy ideals of B . Then:

D) K(f vg)=K(f)vK(g) fcg
2) K(f ng)=K(f)AK(g)
3) K (hui)=K *(h)vK (i) f cyg

4) K*hni)=K “(h) AK i)

Proof:

e K(f ug)is a fuzzy ideal ofB according to the first item from the previous

theorem.
e Foranyb B, then:

o (K(f)b)=max{f (&) eA;K(a)=b;i el
<max{(f ug)@)j cA;K (a)=b;il}
=(K(f vg))b)
=>K(f)cK(f vg)

Similarly, we find K (g) - K (f o g)

Hence K (f LW Q) isan upper bound of K (f ),K(9) in[O,l].
e Let| be another fuzzy ideal of B, whereK(f )c ] & K(g)cj.

=K (K@) cK(j) & KT(K(9)) =K™(j)
=f cK7(j) & gcK7(j)=f ug cK™(j)
=K({f vg)cK(K(j)=K({f vg)c]
Hence K (f \U Q) is the smallest fuzzy ideal of B containing K (f ) and K (g).

The others can be proved using similar arguments.

2-13 Theorem:

Let A,B betwo Pre A*—algebras, and let f y J be two fuzzy ideals of A and B respectively.
Thenf X g isafuzzyideal of A xB .
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Proof:

Let(a ,b,).(a,,b,) € A xB . We have:

o (f x0)((a,b) v (a,b,)=(f xg)(ava,b, vb,)
=min{f (a,va,),g (b, vb,)|
>min{min{f (a,).f (a,)},min{g (b, ), g (b,)}}
=min{min{f (a,),9 (b,)},min{f (a,),9 (b,)}}
=min{(f xg)@b,).(f xg)(a,.b,)}
=(f xg)(@ b)) A(f xg)(a,.b,)
o (f xg)((a,b) A (3,.b,)) = (F xg)(@ Aa,b, Ab,)
=min{f (3,a,),q (b, Ab,)|
>min{f (a,),9(,)}
=(f xg)(a,.b,)

2-14 Definition:
Let A,B be two Pre A*—algebras, and let T be a fuzzy set of A XB . A fuzzy set
pry(f ): A — [0,1], which is defined as:
vaeA ; pr,(f )@ =max{f (a,b)|b B}
is called the projection of f on A . Similarly we can define the projection of f on B as follow:

Vb eB ; pry (f )b) =max{f (a,b)|acA}

2-15 Theorem:

Let A,B be two Pre A*—algebras, and let T be a fuzzy ideal of A X B . Then pr, (f ) (
pry (f )) be afuzzyideal of A (B ).

Proof:

Letd,,a, € A . We have:
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o pr,(f )(&) A pr,(f )(&,) =max{f (a,b;)|b, €B;i eI}
max{f (a,.b;)|b; €B;j eJ}
=max{f (a,b;) Af (a,b;)|b; b, €Bjiel,jel}
<max{f ((a,,b;) v (a,b;,))|b;.b; Bsiel,j eI}
<max{f (a va, b, vb;)|b vb; eBjiel,jel}
=pra(f )@ va,)
e pr, (f )(a,) = max{f (az,bj)‘bj eB;jel}
<max{f ((a,b;) A (a,,b;))|a, €Ab,,b; eBji el j e}
=max{f (a Aa,,b, Ab;)|a, eAib; b, eBjiel,jel}
<max{f (a Aa,,b, Ab;)|a, eAib, Ab; eBiiel,jel}

=pry (f )(ai /\az)
Then pr, (f ) be afuzzyideal of A .
Similarly, we can prove that pry (f ) be a fuzzy ideal of B.

2-16 Definition:

Let A,B be two Pre A*—algebras, and let T be a fuzzy set of AxB , and suppose that
acA andb € B . We can define the fuzzy setf A(b) A — [0,1] as follow:

VX €A fA(b)(X) =T (X,b) and call it the marginal fuzzy set of f with respect tol . And
can define the fuzzy set f B(a) :B — [0,1] asfollow: Vy €B ; f B(a)(y) =f (a,y)and call it the

marginal fuzzy set of f with respecttod .

2-17 Theorem:
Let A,B be two Pre A*—algebras, andlet T bea fuzzy ideal of A xB , and suppose that
acA andb €B .Thean(b) (f B(a)) be a fuzzy ideal of A (B ).

Proof:

Letx,,X, €A . We have:

o .00 AT () =f (X,b) AT (x,b)
<t ((x;,0) v (x,b))
=f (x,vX,,bvb)

=f (x,vx,,0)=f P (x,vx,)
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* fA(IO)(Xz):f (X,,0) <f ((x1,b) A (x,,b))
=f (X, AX,,b AD)=f (X, AX,,b)
:fA(b)(Xl/\Xz)

So f A(b) be a fuzzy ideal of A . Similarly we can prove that f B(a) be a fuzzy ideal of B.

Recommendations.
This paper lays the basis of further studies on the fuzzy ideal theories in the Pre A* - algebras like:
Prime fuzzy ideals, relationship between fuzzy ideals and prime fuzzy ideals, fuzzy congruence relation,

create a lattice of fuzzy ideals, and other fuzzy structures in the Pre A* - algebra.
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